Высказываться о философских проблемах теории множеств, разумеется, не совсем то, что высказываться о самой теории множеств. Я, по крайней мере, в этом положении чувствую себя непривычно и неловко. Я остро ощущаю тщетность попыток сформулировать позицию, приемлемую для всех или хотя бы для многих, и одновременно сознаю непоследовательность и трудности моей собственной точки зрения. Конечно же, те, кто до меня совершали этот рискованный переход от математики к философии, обычно шли на это на более позднем этапе своей научной карьеры. Наконец, к довершению трудностей, почти немыслимо добавить
Но вот, невзирая на все эти оговорки, я чувствую некоторое воодушевление от возможности высказать свои мысли, надеюсь, не слишком догматично, и указать на обстоятельства, на которые, пожалуй, следует указать. Фундаментальные открытия в логике были сделаны так недавно, что мы ещё в состоянии разделять глубокое волнение от этих поисков вслепую. Всплеск исследовательской активности в теории множеств, о котором свидетельствует нынешняя встреча, возможно, усиливает наш энтузиазм. Тон сегодняшних философских дискуссий, однако, как будто изменился. Возможно, математики полностью выложились в неистовых спорах прошлого, или их аудитория утомилась от полемики, как бы то ни было, сейчас принято формулировать свою точку зрения, но не пытаться тут же обращать слушателя в собственную веру. В этом духе собираюсь выступить и я, чистосердечно уверив слушателей в своей терпимости к чужим взглядам.
Хотя я не представляю себе, что можно было бы назвать «истинным» прогрессом в основаниях математики, очень интересно проследить с точки зрения историка, как высказывались на эту тему разные поколения, и попытаться угадать, как окрашивал их мнения дух времени. Сам я предпочитаю рассматривать математическую деятельность как сугубо человеческое предприятие, а отнюдь не как безличное наступление науки, свободной от всех человеческих слабостей. Так, позиция по вопросам оснований, которую занимает тот или иной математик, в большой мере определяется его воспитанием и окружением. Мне кажется, что желание принять принципы, ведущие к интересной и красивой математике, в прошлом безусловно преодолело разнообразную и серьёзную критику. В этом докладе я хотел бы указать на аналогичные тенденции, которые существуют сегодня.
Прежде в центре споров находились многие вопросы, о которых я без особых на то причин высказываться не стану, например, закон исключённого третьего. Хотя он и связан с проблемами теории множеств, скажем, через использование непредикативных определений, сам по себе он не относится к теории множеств и здесь обсуждаться не будет. Я не намерен заниматься также всеми остальными проблемами законности применения исчисления предикатов, вопросами о природе формализации математики и чисто философскими вопросами, мало связанными со спецификой математического знания. Для меня важнейшей проблемой представляется существование бесконечных совокупностей. Отношение к бесконечным множествам по традиции было критерием размежевания математиков. Знаменитые логические антиномии никогда не играли заметной роли в математике просто потому, что они не имели ничего общего с обычно используемыми рассуждениями. Никогда не рассматривались все мыслимые объекты универсума, длины описаний
Нет сомнения, что в ряде случаев бесконечными множествами можно пользоваться без особых опасений. Очевидно, всё равно, сказать ли, что некоторым свойством обладают все целые числа или все элементы множества целых чисел. Точно также, сказать, что n принадлежит множеству четных чисел, всё равно, что сказать «n чётное». Иными словами, можно заменить использование некоторых множеств названием соответствующих свойств. Если бы это удавалось сделать всегда, у нас осталось бы мало оснований для беспокойства. В теории чисел, желая избежать апелляции к понятию произвольного множества целых чисел, мы должны формулировать принцип индукции отдельно для каждого свойства, которое можно выразить. Однако чрезвычайная сложность теории множеств, особенно её непредикативный характер, мешают просто представлять себе множества как стенограмму свойств. Всё же самые мощные и характерные аксиомы теории множеств аксиомы степени и подстановки описывают множества свойствами, а гёделевская теория конструктивных множеств показывает, что некоторую модель теории множеств можно получить, рассматривая вообще только множества, в некотором смысле отвечающие свойствам. То обстоятельство, что аксиома подстановки есть на самом деле бесконечная схема аксиом, в определённых отношениях является недостатком. Действительно, создаётся впечатление, что мы позволяем рассматривать лишь некоторые свойства, вместо того чтобы указать фундаментальное описание способов построения множеств. Конечно, всё это связано с теоремой Гёделя о неполноте, согласно которой никакая конечно аксиоматизируемая система не может быть полной. Эта теорема является величайшим препятствием для любой попытки полностью понять природу бесконечных множеств. Одновременно, показывая, что высшие бесконечности отражаются в теории чисел, ибо позволяют нам доказывать недоказуемые без них утверждения, теорема Гёделя чрезвычайно затрудняет отстаивание той точки зрения, что высшие бесконечности можно попросту отвергнуть. Наша привычка к теореме о неполноте не должна мешать нам постоянно видеть эту фундаментальную недостаточность всех формальных систем, которая имеет гораздо более далеко идущие последствия, чем независимость частных утверждений вроде гипотезы континуума. Именно это лежит в основе моего пессимистического мнения о том, что любое техническое достижение и в будущем не прольёт света на основные философские проблемы.
Рядовому математику, желающему лишь увериться в том, что его дело стоит не на песке, самым привлекательным способом избежать трудностей может показаться программа Гильберта. С этой точки зрения математика есть формальная игра, в которой следует заботиться лишь о непротиворечивости. С течением времени, когда операционный подход распространился на другие области, скажем, физику, привлекательность этой позиции, возможно, увеличилась. Можно работать лишь с непосредственно данными объектами, а в математике к таким относятся скорее формальные языки, чем бесконечные множества. Действительно, гильбертовская программа формализации
Сторонник реалистической философии полностью принимает ценности традиционной математики. Все вопросы типа гипотезы континуума допускают положительный или отрицательный ответ в реальном мире безотносительно к их независимости от той или иной системы аксиом. Вероятно, большинство математиков предпочли бы эту точку зрения. В ней начинают сомневаться лишь после осознания некоторых трудностей теории множеств. Если эти трудности особенно смущают математика, он спешит под прикрытие формализма, предпочитая, однако, в спокойное время обретаться
Исторически математика как будто не склонна терпеть неразрешимые предложения. Такое предложение может быть возведено в ранг аксиомы и стать широко принятым после многократного употребления. Такова в общих чертах судьба аксиомы выбора. Я склонен оценить эту тенденцию просто как форму оппортунизма. Разумеется, это безличный и весьма конструктивный оппортунизм. Тем не менее, вера в ценность и важность математики не должна полностью изглаживать из нашего сознания честную оценку беспокоящих проблем. В случае с гипотезой
С реалистической позиции можно гадать о
К этому моменту должно быть ясно, что я выбираю формализм. Едва ли можно назвать этот выбор мужественным, вероятно, большинство известных математиков, высказывавшихся на этот счёт, в той или иной форме отвергали позиции реализма. Сформулировать свою точку зрения совершенно явно меня побудила речь Абрахама Робинсона в Иерусалиме в 1964 г. Она вынуждает принять на себя тяжёлую ношу. Едва ли не тяжелей остального необходимость допустить, что КГ, возможно, первый приходящий в голову важный вопрос о бесконечных множествах не имеет внутреннего смысла. Жизнь была бы гораздо приятнее, не будь гильбертовская программа потрясена открытиями Гёделя. Я твёрдо верю, что программа Гильберта ни в каком смысле не может быть восстановлена. Доказательства непротиворечивости всегда вызывают острую неудовлетворённость и явно сохраняют черты порочного круга.
Как уже говорилось, величайшая слабость формализма состоит в необходимости объяснить успешность чисто формальных аксиом, составляющих теорию множеств. Моя точка зрения, неоднократно выражавшаяся и прежде, состоит в том, что эти аксиомы экстраполируют язык более финитистской математики. Тенденции к такому расширению очень сильны. Для пояснения позвольте мне сначала напомнить ситуацию, в которую рано или поздно попадает каждый логик. Беседуя с квалифицированным математиком, не знающим логики, обнаруживаешь трудность общения, едва лишь речь заходит о формальных системах и анализе структуры формул. Математик гораздо охотнее будет говорить о моделях
Став на позиции формализма, я чувствую себя обязанным объяснить, почему я не призываю отменить всю инфинитистскую математику. Я хотел бы высказать следующее мнение: мы занимаемся теорией множеств по той причине, что ощущаем наличие неформального доказательства её непротиворечивости. Вот на чём основано это чувство: в каждом конкретном случае мы говорим лишь о специфических множествах, определённых свойствами и, прослеживая противоречие в обратном порядке, мы можем в конце концов свести его к теоретико-числовому. Использование непредикативных определений усложняет задачу интуиции, потому что неограниченная непредикативность определённо ведёт к хорошо известным парадоксам. Всё же обычная аксиома подстановки даёт нам возможность начать с
Вот один из способов размышлять о доказательствах непротиворечивости. Начнём с конечного числа аксиом, скажем, S1. Для каждого множества, существование которого постулируется, выберем по символу и подставим его в соответствующее утверждение. Получится новая система утверждений S2. Чтобы перейти к Sk, мы выбираем новые символы для всех множеств, существование которых утверждалось ранее; кроме того, для каждого утверждения вида " x
Даже в самом оптимальном случае схема, которую я набросал, позволила бы справиться лишь с проблемами, связанными с аксиомой подстановки. Наша интуиция о недостижимых или измеримых кардиналах ещё недостаточно развита или по крайней мере не поддаётся передаче в общении. Мне кажется, тем не менее, что полезно развивать наше таинственное чувство, позволяющее судить о приемлемости тех или иных аксиом. Здесь, разумеется, мы должны полностью отказаться от научно обоснованных программ и вернуться к почти инстинктивному уровню, сродни тому, на котором человек впервые начинал думать о математике. Лично я, например, не в состоянии отказаться от этих проблем теории множеств просто потому, что они отражаются в теории чисел. Я сознаю, что моя позиция в прагматическом плане мало чем отличается от позиции реализма. Всё же я чувствую себя обязанным сопротивляться великому эстетическому соблазну без околичностей принять множества как существующую реальность.
Читатель безусловно ощутит горечь пессимизма в моих заметках. Математика подобна прометееву труду, который полон жизни, силы и привлекательности, но содержит в самом себе зерно разрушающего сомнения. К счастью, мы редко останавливаемся, чтобы обозреть положение дел и подумать об этих глубочайших вопросах. Всю остальную жизнь в математике мы наблюдаем блестящую процессию и, возможно, сами участвуем в ней. Великие задачи теории множеств, казавшиеся неодолимыми, падают. Изучаются новые аксиомы, всё большие и большие кардиналы становятся доступнее интуиции. Маяк теории чисел сияет над этой зыбью. Когда сомнения начинают одолевать нас (что, я надеюсь, происходит нечасто), мы отступаем под безопасные своды теории чисел, откуда, собравшись с духом, снова бросаемся в неверные воды теории множеств. Такова наша судьба жить, сомневаясь; преследовать цель, в абсолютности которой мы не уверены; короче, понимать, что наша единственная «истинная» наука имеет всё ту же смертную, возможно, опытную природу, что и все прочие человеческие предприятия.
* P. J. Соhen, Comments on the foundations of set theory, Proc. Sym. Pure Math. 13:1 (1971),