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The board of programme changes informed us that R. 
Ap&y (Caen) would speak Thursday, 14.00 "Sur l'irration- 
alit6 de ~'(3)." Though there had been earlier rumours of  
his claiming a proof, scepticism was general. The lecture 
tended to strengthen this view to rank disbelief. Those who 
listened casually, or who were afflicted with being non- 
Francophone, appeared to hear only a sequence of  unlikely 

assertions. 

Exercise 
Prove the following amazing claims: 

For  all a 1, a 2, . . .  

a l a 2  " " " a k - - 1  = ! 

k=l  ( x + a l ) . . . ( x + a k )  x "  

_. ~ 1 5 ~ (--1) n -1  

Q ~'(3) -" n=l n 3 - 2 n = l  n 3 ( 2 n )  . (1) 

Consider the recursion: 

n3un + (n - 1)3Un_2 = (34n 3 - 51n 2 + 27n - 5)Un-1, 

n/> 2. (2) 

Let {bn} be the sequence defined by bo = 1, b 1 = 5, and 
bn = un for all n; then the bn all are integers! Let {an) be the 
sequence defined by ao = 0, al = 6, and an = Un for all n; 
then the an are rational numbers with denominator dividing 
2[ 1, 2 . . . . .  n] 3 (here [ 1, 2 . . . .  , n] is the lcm (lowest com- 

mon multiple) of  1 . . . .  , n). 

@ an/b n ~ ~'(3); indeed the convergence is so fast as to 
prove that f(3) cannot be rational. To be precise, for all 
integers p, q with q sufficiently large relative to e > 0, 

1 
1~'(3) - P [  > 

q qO+e ' 0 = 13.41782 . . . .  

Moreover, analogous claims were made for ~'(2): 
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Exercise (continued) 

1 /r 2 
f ,  - 

n = l  6 
- 3  

R. Apery 
Departement de Mathematiques 
et de Mecanique 
Universite de Caen 

1 (3) 
n= l  n2(2n)  

@ Consider the recursion: 

n2Un - (n - 1)2Un_2 = ( l l n  2 -  l l n  + 3)Un-1, 

n>~2. (4) 

Let (bn) be the sequence defined by b ;  = 1, b~ = 3 and 
the recursion; then the bn all are integers! Let {an} be the 

t 

sequence defined by a~ = 0, am = 5 and the recursion; then 
P 

the an are rational numbers with denominator dividing 
[1, 2 . . . . .  n] 2. 

@ a n / b ~  ~ ~'(2) = 7r2/6; indeed the convergence is so fast 
as to imply that for all integers p, q with q sufficiently large 

relative to e > 0 

i z r2-  p I > 1 0' q q~WT' = 11.85078 . . . .  

I heard with some incredulity that, for one, Henri 
Cohen (Bordeaux, now Grenoble) believed that these claims 
might well be valid. Very much intrigued, I joined Hendrik 
Lenstra (Amsterdam) and Cohen in an evening's discussion 
in which Cohen explained and demonstrated most of the 
details of  the proof. We came away convinced that Profes- 
seur Ap6ry had indeed found a quite miraculous and mag- 
nificent demonstration of  the irrationality of  ~'(3). But we 
remained unable to prove a critical step. 

2. For the Nonexpert Reader 

A number/3 is irrational if it is not of  the form Po/qo; Po, qo 
integers (E 2'). A rational number b is characterised by the 
property that for p, q E Z (q > 0) and b 4= p/q there exists 

an integer qo (>  0, of course) such that 

i 3 _ p [ ~  1 
q q q o  
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On the other  hand  for irrational 13 there are always 

infini tely m a n y  p /q  (for instance, the convergents of  the 
continued fract ion expansion of/3) such that  

113- P-- I < ~  �9 q 

Plainly this yields a cri terion for i rrat ionali ty.  

I t  there is a 6 > Oand a sequence {Pn/qn) o f  rational 

numbers such that  Pn/qn 4= 13 and 

1 
t 1 3 - P n t  < n = l , 2 ,  

qn ~ "'" 

then 13 is irrational. 

A successful applicat ion of  the cri terion may  yield a 

measure of  i r ra t ional i ty:  

I f  113 - (Pn/qn)l < 1/qn 1+~ , and the qn are monoton ic  

-- I+K (for n suff iciently large relative increasing with qn <" q n -  1 
to K > 0), then for  all integers p, q > 0 suf f icient ly  large 
relative to e > O, 113 - (P/q)l > ( 1 / q  (1 +~)(~ -tQ+E). 

For example if  the sequence (qn } increases geometrical- 

ly we may take K > 0 arbitrarily small so tha t  1 + (1/6)  

becomes an irrationality degree for 13. To see the claim sup- 
pose that 113 - (P/q)[ <<. 1/q r and select n so tha t  
qnL+_~ ~<qT < qnl+,~. Then  

1 ~ l p _ _ _ P n l ~ 1 1 3 _ P n l + 1 1 3 _  p l <  1 - - 1 < 2  
qqn q qn qn q q l  +~ + qr qr " 

I qr  - -  1+~ < q  l+'r(l+K)/(l+5) or Hence g ~< qqn ~'- q q n -  1 
r < ( 1  + 6)/(6 - K) + e as claimed. This a rgument  is effec- 

tive (the "suff ic ient ly  large" requirements  can be made ex- 
plicit.) 

It is wel l-known (the theorem of  T h u e - S i e g e l - R o t h )  

that  for 13 algebraic (a zero of  a po lynomia l  ao Xn + 
+ al  X n -  I + . . .  + an ,a  i e ~ always: 113 - (P/q)[ > 1/q 2+e, 

for q sufficiently large relative to e > 0. So if t3 is too well  

approximable by rationals (5 > 1 above) then  13 is no t  alge- 
braic, bu t  transcendental. Unfor tuna te ly  on ly  a set o f  mea- 

sure zero of  t ranscendenta l  numbers  can be detected in 

this way, whilst, since the set of  algebraic number s  is count-  
able, almost all numbers  are transcendental .  

It  is no tor ious ly  difficult  to prove that  any  given natural- 

ly occurring n u m b e r  is irrational, let alone t ranscendental .  

One may be for tuna te :  for example the usual  series for e 

implies immedia te ly  (easy exercise) that  e is irrational.  In 
the case of  the (R iemann)  ~'-function: ~'(s) =: ~ n - s  

(Re s > 1) there is the quite well-known fact that  

oo 

~'(2k) =: G n -2k  = ( -  1) k-1 (27r)2k 
1 2 -  (2k)------~-. B2x '  

k = 1, 2 , . . .  (5) 

where the Bernoulli  numbers ,  Bin, are rat ional  (~-(2) = 7r2/6, 
~'(4) = 7z4/90, ~'(6) = 7r6/945, . . .). There are some classical 

techniques  1 for detecting the i rrat ional i ty of powers of 7r, 

bu t  it is most  useful to appeal to the theorem of H e r m i t e -  

L indem ann  (whereby e a is t ranscendenta l  for algebraic 

a r 0) whence 7r is t ranscendenta l  (because e ~ri = - 1) and 

so afor t ior i  its powers are irrational.  So it has long been 

k n o w n  that  ~'(2k) is irrational,  k = 1, 2 . . . . .  On the other  

hand there are no  useful analogous closed evaluations of  ~" 

at odd arguments.  2 Incidental ly ,  (5) is demonstra ted quite 

easily. 

The Bernoull i  numbers  are defined by the generating 

func t ion  (a nontrivial  example of  an even funct ion!)  

l ~ B2m Z + -- Z ~ Z 2m 
e z -  1 2 m=O (2m)!  

hence by  the recursion 

( n ~ l ) B  0 + (n~-l) B1 + . . .  + (n'~l)B n = O, 

1 
B o = 1 ,  B 1 -  -~; n = 2 , 3  . . . . .  

On the other hand it is wel l -known that 

sin 7rz = 7rz 1 -- , 
n = l  

1 See for example I. Niven: IrrationalNumbers (Carus Monographs 
#11, MAA-Wiley, 1967). 

2 There is however a famous formula of Ramanujan: let a and 13 be 
positive numbers such that a13 = ~r 2. Then if n is any positive 
integer 

a - n  ~'(2n + 1) + 
1 e 2c~k - 1 

11 z = (_~)-n  ~'(2n + 1) + - - - -  - 
1 e 2i lk-  1 

n +1 
_ 2 2 n  ~ (-1)  kB2k B2n+2-2k  an+l--kflk. 

k=0 (2k)! (2n + 2 - 2k)! 

Taking a a rational multiple of ~r one sees that ~'(2n + 1) is given 
as a rational multiple of 7r 2n+ 1 plus two very rapidly convergent 
series. See for example: Bruce C. Berndt: Modular transforma- 
tions and generalizations of several formulae of Ramanujan: 
Rocky Mountain J. ofMaths. 7 (1977) 147-189. Indeed the 
above formula is the natural analoque of Euler's formula (5). 
The cited paper gives many other formulas and detailed refer- 
ences. 



so 

7"( COS 7rz 
- rr cot 7rz - 

sin ~rz 

1 ~ 2z 

Z n = l  H 2 ~ Z  2 " 

But 

e niz + e -~riz 
7rz cot zrz = zriz 

e 7riz- e -  7riz 
c o  

= ~ (-- 1) m (27r) 2rn B 2 m z 2 m ,  

rn=O (2m)!  

2 n i z  

e 27riz -- 1 
- -  + 7riz = 

and on the other hand 

7 r z c o t T r z = l - 2  N 1 z2 m .  
m=l = 

Comparing coefficients one has (5). With a l i t t le ingenui ty  

one can avoid a direct appeal to the infinite p roduc t  for 

sin rrz or to the expansion for n cot  nz.  3 
Indeed,  proving the i r ra t ional i ty  of  ~(2n + 1), 

n = 1, 2 , . . .  const i tutes  one of  the outs tanding problems 

of  the theory (ranking wi th  the ar i thmetic na ture  of  

3' =: l i m n ~ = ( 1  + .  �9 �9 + ( 1 / n ) - l o g n ) ,  and o f e n ,  e + r r . . .  
which are yet  unde te rmined) .  It  is some measure of  Ap6ry's  

achievement  that these quest ions have been considered by 

mathemat ic ians  of  the top rank over the past few centuries 

wi thou t  much success being achieved. 

3. Some Irrelevant Explanations 

For much  of the following details I am indebted  to Henri  

Cohen. All this due to Ap6ry, o f  course. The iden t i ty  

K 1 a l a  2 . a K ~, a �94 � 9  t _ . .  

k=l (x  + a l )  . . . ( x  + a k )  X x ( x  + a l )  . . . (X + a K )  

follows easily on writ ing the fight-hand side as A o - A K 

and not ing  that  each term on  the left i s A k _ l  - Ak. This 
explains @ .  Now p u t x  = n 2, ak = - k  2, and take 

k ~< K <~ n - 1, to obta in  

, - 1  ( _ l ) k - l ( k _  1)!2 

k=l 
_ 1 (-- 1 )n - l (n - -1 ) !  2 

n 2 n2(n  2 _  1 2 ) . . . ( n 2 - ( n  - 1) 2 ) 

_ 1 2 ( -  1) n -  1 

3 For a detailed set of references, and some new proofs, see 
Bruce C. Berndt: Elementary evaluation of i'(2n). Maths Mag. 
48 (1975), 148-153. 
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Writing 

1 k ! 2 ( n - k ) !  

e n , k -  2 k a ( n + k ) ! '  

because 

( -  1 ) k - l ( k -  1)! 2 

we have 

N n - 1  
E ( -  1)k(e,~k- e.-~,k) = 

n = l  k = l  

N 1 N ( _  1)n-1 
= E  - 2  E - 

N 
= ~ (--1)k(eN, k - -  ek, k )  = 

k = l  

N (__l)k ] ~ (__ 1)k-1 
= ~ + - -  

k=l 2 k 3 ( N ~ k ) ( N )  2 k=l k 3 ( ~  k) 

and on no t ing  that  as N ~ oo the first term on  the right 

vanishes, we have @ . 4  

4. Some Nearly Relevant Explanations 

All this is quite irrelevant to the proof.  I t  would suffice to 
in t roduce the quant i t ies  (k ~< n)  

4 Actually the formula @ is quite well known: it was observed 
some years ago by Raymond Ayoub (Penn State) and it in fact 
appears in print: Margrethe Munthe Hjortnaes: Overf~ring av 
rekken ~ff=l (l/k3) til et bestemt integral Proc. 12th Cong. 
Scand. Maths, Lund 1 0 - 1 5  Aug. 1953 (Lund 1954);indepen- 
dently again it was noticed by R. William Gosper, Jr. (Palo Alto), 
see Gosper's paper: A calculus of series rearrangements Algorithms 
and Complexity, New Directions and Recent  Results, ed. J. Traub 
(Academic Press, 1976) 121-151, for relevant techniques. 
Henri Cohen remarked that the formula is: 

5 27r 2 2 
~'(3) =~  L i3e~  log t o -  31~ 3w 

(with ~o = ~(1 + x/5) and Li3(x ) = ~c3/n  3, the trilogarithm). 
Hjortnaes and Ayoub, and respectively Gosper note the integral 
representations (easily shown equivalent) 

flog ~'(3) = 1 0 J o  ~ ~  

~'(3) = 10 flo/2 (arcsinh t)2dt" 
t 

In the case ~'(2) the formula is even better known. It is, for 
example, referred to by Z. R. Melzak: Introduction to Concrete 
Mathematics (Wiley, 1973), p. 85 (but the suggested proof is not 
quite appropriate). (~) may be proved by slightly varying the 
argument in Section 3 - multiply by ( -  1) n -  1 instead of divid- 
ing by n, Many formulas similar to (~) and (~) appear in the 
literature and the folklore. 
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n 4 k ( _ l ) m - 1  

cn, k = N + G (nm+m), (6) m=l m m=l 2 m 3 ( n )  

and to remark that plainly Cn, k ~ ~'(3) as n -+ ~,  uniformly 

in k. One might hope that a sequence Cn, k already implies the 
irrationality of  ~'(3) (say, the diagonal, with k = n) but this 
is not quite so. To see this, it is useful to prove a lemma: 

Lemma.  

Z +  2c ,k e Z + . . .  + 
23 

2~ Z 

n 3 [1, 2 . . . . .  n] 3 

(equivalently: 211, 2 , . . . ,  n]3 Cn,k(n+kk ) is an integer). 

Proof. We check the number of  times that any given prime 
p divides the denominator. But 

n + k  n + m ~  n + k  k 
( k ) / (  m I = ( k - - m ) / ( r n )  

so, because 

ordp((n)  ) ~< [log n ] _ klo-G~--J ordpm = ordp[ 1 . . . . .  n] - 

- ordpm, 

we have 

ordp(m3(m n) (n+m)/(n~k)) = d 3 n k n+k or p(m (m) (m) / ( k -  m )) 

~< 3(ordpm) + [lognl+ [log - 2(ordpm), 
[ lo---~ J [log p J  

which yields the assertion, because m ~< k ~< n. 

We remark that those who know it well s know that for 
n sufficiently large relative to e > 0, 

[1, 2 . . . . .  n] < e  n(l+e) 

(roughly: [1, 2 . . . . .  n] = IIp<~np II~176 ~ Ilp< n n 

~-- n n/l~ = en). It will turn out that the Cn, k have too 
large a denominator relative to their closeness to f(3). Hence 
to apply the irrationality criterion we must somehow accel- 
erate the convergence. Ap6ry described this process as fol- 
lows: 

Consider two triangular arrays (defined for k ~< n) with 
entries d(O~ _en,kt_ ,n+k,k ) a n d  ( n ; k )  respectively. We recall 

5 Those  who  k n o w  i t  rea l ly  wel l  wr i te  log[1 . . . . .  n] = ~,m=lO(nl/m) 
= qJ(n) where  O(n) = ~p<~n log p. Then  i t  is k n o w n  t h a t  

~(n)/n <~ 1 . 0 3 8 8 3 . . .  (wi th  m a x i m u m  at  n = 113)  and  indeed  

t~(n) - n < ( 0 . 0 2 4 2 3 3 4 . . . )  n / log  n for  n ~> 525 752;  See J. 

Bark ley  Rosser  and  Lowel l  Schoenfe ld :  Math. Comp. 29 (1975) ,  

2 4 3 - 2 6 9 .  

that the arrays have the property that their "quot ient"  
converges to ~'(3), in the sense that  given any "diagonal" 
(n, k(n)) ,  the quotient of  the corresponding elements of  
the two arrays converges to ~'(3). Now apply the following 
transformations to each array: 

d n ( O )  ~ ,4(0) _ `4(1) 
, k  ~ n , n - - k  - U n ,  k 

dn 1) --~ /n~,.4(1)_,4(2) 
, k  ~.k)ten, k - Un, k 

,k -* 2 ~ , =,4(3) 
~n,k  t= 

tin(3) [n~,4(3 ) = ,4(4) 
, k  ~ I.k]Un, k Un, k 

dn (4) , k "~ - Ctn, k 
k'= 0 

-" (Z) 

__-). 

k 

k l = 0  

k 
Z 

k l = 0  

(2n;kl)  

k k2 
Z E 

k2=O k l = 0  

(~2) k2 n 
(kl) (ks) (2.Xkl). 

Of course the arrays have retained the property that their 
"quot ient"  converges to ~'(3), and we still have 
211, 2 . . . . .  n]3dn, k EZ:  We now take the main diagonals 
(k = n) of  the arrays, calling them respectively (an} and 
{bn} and make the fantastic assertions embodied in @ ! 
That is, each sequence satisfies the recurrence (2)! This is 
plainly absurd since surely inter alia a solution (Un } of  (2) 
(with integral initial values u o, u l )  will have Un with denom- 
inator more like n! 3 than like 1 (or even 211, 2 . . . . .  n]3). 
In Marseille, our amazement was total when our HP-67s, 
calculating {bn} on the one hand from the definition 
above, and on the other hand by the recurrence (2), kept 
on producing the same values! 

5. It  Seems that Ap6ry Has Shown that ~'(3) Is Irrational 

We were quite unable to prove that the sequences (an } 
defined above did satisfy the recurrence (2) (Ap6ry rather 
tartly pointed out to me in Helsinki that he regarded this 
more a compliment than a criticism of his method). But 
empirically (numerically) the evidence in favour was utterly 
compelling. It seemed indeed that ~'(3) had been proved 
irrational, because the rest, thus (4"), follows quite easily: 
Given (with P(n - 1) = 34n 3 - 51n 2 + 27n - 5), 



n3an - P ( n -  1)an-1 + ( n -  1)3an_2 = 0, 

n3bn - P ( n -  1)bn-I  + ( n -  1)3bn_2 = 0, 

one mul t ip l ies  the first  equa t ion  by  bn_ 1, the second by  

an-  l, to  obtain 

n3(anbn_l - a n - l b n )  = 

= ( n -  1 )3 (an_ lbn_2 -an_2bn_ l ) .  

Recall ing alb o - aobl = 6 x 1 -- 0 x 5 = 6, this cleverly 
yields 

6 
a n b n _ l - a n _ l b  n n3 .  (7) 

Seeing tha t  ~'(3) - ao/bo = ~'(3), i t  is easily induced  6 tha t  

}~.(3)_ an ] = ~ 6 

bn k=n+l k3b~bk_l ' 

s o  

f (3)  - a~ = O(b2 2). 
b~ 

On the other  hand the recurrence relat ion makes  it easy to  

es t imate  bn, at any rate asympto t ica l ly .  We have 

b n - ( 3 4 -  51n - 1  + 27n - 2  - 5n-3 )bn_ l  

+ ( l  - 3n - 1  + 3n - 2  - n-3)bn_2  = O, 

and since the po lynomia l  X 2 - -  3 4 x  + 1 has zeros 17 -+ 12 x / 2  
= (1 -+ x / ~ )  4 we readi ly  conclude  tha t  bn = o(an) ,  

= (1 + x / ~ )  4. In fact  Cohen has, more  precisely,  calcu- 

la ted tha t  

hi  1 -~- 

(27r X/-~)3/2 n3/2 1 64n + O ( n - 2 )  " 

(8) 

We have to recall tha t  the a n are no t  integers. But  wri t ing 

Pn = 211, 2 . . . . .  nl3a, ,  qn = 211, 2 . . . . .  n]abn 

we have pn , qn E Z a n d  

qn = O(ane3n), ~'(3) - Pn = O(a-2n)  = O ( q n ( l + 8 ) ) ,  
qn 

6 W r i t e  ~'(3) - an /b  n = Xn a n d  n o t e  t h a t  w e  h a v e  •  - X n -  1 = 

6 / n 3 b n b n  - 1 a n d  • = 0. 
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with 

8 - log a --  3 
log a + 3 
- -  - 0 .080 5 2 9 . . .  > 0 .  

Hence, by  the  i r ra t ional i ty  cr i ter ion,  ~'(3) is indeed  irration- 
al, and moreover ,  because 6 - 1 = 12.417 8 2 0 . . .  we have: 

For all integers p, q > 0 sufficiently large relative to 
e > 0 :  

1 ~ ( 3 ) - P t > q  - ( ~  0 = 1 3 . 4 1 7 8 2 0 . . .  
q 

6. Some Trivial Ver i f icat ions  

To convince ourselves of  the val idi ty  of  Ap4ry ' s  p r o o f  we 
need only comple te  the fol lowing exercise.  

Exercise 
Prove the following identities: 

Let  

k = O  k=O 

Cn, k = m = l ~  + ~  1 zk ( _ l ) m - - 1  
m=l  2 m 3 ( n )  (m)n+m" 

Then ao = 0, a l  = 6; bo = 1, bl  = 5 and each sequence {an} 
and (bn) satisfies the recurrence (2). 

In the same spirit, the case o f  ~'(2) requires:  

Let  

t k )cn, k 
k = O  k = O  

1 k ( _ l ) n + m - 1  
Cn,k = 2 ( - 1 ) m - - -  + E 

m=l m 2 2~n~ m+m~" m = l r n  t m ) t  m ) 

t 

Then a~ = 0, a'l = 5; b e = 1, bl  = 3 and each sequence {an) 
and {bn} satisfies the recurrence (4). 

I t  is useful  to  not ice  that  very l i t t le more  than jus t  prov- 
ing these claims is required for Ap6ry ' s  proof .  Af te r  all, it is 

quite plain tha t  an/bn + f(3) ;  the b n are integers, and the 
l emma of  Sect ion 4 shows that  the a n are "near- in tegers ."  
In Sect ion 5 we showed tha t  given tha t  the sequences satisfy 
the recursion (2) the i r ra t ional i ty  o f  f (3 )  fol lows because 
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from log a > 3 (a = (1 + x/~-) 4) we obtain ~ > O. Thus, as 
implied in various asides, most of the earlier argument is 
quite irrelevant. Indeed I am indebted to John Conway 
for the remark that even @ is irrelevant. 

Exercise 
Be the f irst  in your  block to prove by a 2-line argument 
that f(3) is irrational. 7 

_@bnGiven the definitions of @ show that an b n_ 1 --an-1 bn 
3 and bn = O(a n) with a=-(1 + X/~) 4. Conclude that 

~'(3) is irrational because log a > 3. 

Exercise 
Astound your  friends with an excellent irrationality mea- 
sure f o r  if2. 

@ Given the definitions of @ show that anbn_ 1 --an_lb n 
= 5( -  1)n - in  - 2  and bn = O(a n) with a = ( �89 (1 + x/5)) s. 
Conclude that [rr 2 -  (p /q) l  >q-(0+e)  with 
0 = 11.850 7 8 2 . . .  for all integers p, q > Q(e). s 

7. ICM '78, Helsinki, August 1978 

Neither Cohen nor I had been able to prove @ or @ in 
the intervening 2 months. After a few days of fruitless 
effort the specific problem was mentioned to Don Zagier 
(Bonn), and with irritating speed he showed that indeed 
the sequence (bn } satisfies the recurrence (4). This more or 
less broke the dam and @ and @ were quickly con- 
quered. Henri Cohen addressed a very well-attended meet- 
ing at 17.00 on Friday, August 18 in the language of the 
majority, proving @ and explaining how this implied the 

7 The author  does no t  pretend to be able to do this. Notice that  
in fact even less is needed: it is sufficient to show anb n_ 1 
a n_ lbn = 0(~, n) and b n = o(~n), with log ~3 - log 3' > 3. 

8 Though we have long known that  g'(2) is irrational, Ap6ry's  
result in this case is significant. The irrationality degree for n 2 
is the  best known;  the irrationality degree implied for n is 
23,701564 . . . .  These results compare very favourably with 
those of  Mahler: In - (p/q)l > q - 4 2 :  On the approximat ion  of 7r 
Proc. K. Ned. Akad.  Wet. Amsterdam A,  56 (= Indag. Math. 15) 
(1953) 2 9 - 4 2 ,  and an indication that  In - (p/q) l> q - 3 0 ;  see 
also K. Mahler: Applications of some formulae by Hermite to 
the approximat ion o f  exponent ials  and logarithms. Math. 
Annalen 168 (1967) 2 0 0 - 2 2 7 .  Wirsing announced  In - (p/q)l 
> q - 2 1  and Mignotte proved tha t  (for q sufficiently large) 
In - (p/q)l > q - 2 O ;  this is the best known result .  It should be 
noted that  the  cited results depend on deep techniques  and 
complicated es t imat ions  in t ranscendence theory  as contrasted 
with the essentially e lementary methods  in Ap6ry 's  proof. 
Mignotte (op, cir.) also shows that In 2 - (P/q)l > q - 1 8 ,  which 

is weaker than  Ap6ry 's  result. 

irrationality of ~'(3). Ap6ry then made some remarks on the 
status of the French language, and alluded to the underly- 
ing motivation (as mentioned in Section 3) for his astonish- 
ing proof. 

Exercise 

A red herring? 

Show that 

~(3) 6 
5 - 1  

117 - 6 4  

535-729  

1436 - 4096 

3 1 0 5 - . . .  

n 6 

34n3+ 51n 2 + 27n + 5 . . .  

and deduce that ~'(3) = 1. 202 056 9 0 3 . . .  is irrational. 

Show that 

7r 2 _ 5 
~ ( 2 )  - 

6 3+1 
25+16 

69+81 
135+256 

223 + . . .  

n 4 
+ 

l l n 2 + l l n + 3 + . . .  

and deduce that 7r 2 has irrationality degree at most 
11,850 782 . . . .  

8. Some Rather Complicated but Ingenious Explanations 

According to a dictum of Littlewood any identity, once 
verified, is trivial. Surely (~) isvery nearly a counterexample. 
The following is principally due to Zagier and Cohen. Inci- 
dentally, we first considered @ which appeared simpler, 
but this was because we had failed to notice that 

k=0 l=0  k=0  

Now writing n - k for k links the arrays of Section 4 to @ .  



It is quite convenient to write: 

b.k = (7~):('~k) :, a . k  = b . k c . k ,  

( . n ) 
b n= ~, bnk, an= ~, bnkCnk . 

k=O k=O 

Then we wish to show that 

Z, 
k 

((n + 1)3bn+l,k --(34n 3 + 51n 2 + 27n + 5)bn, k + 

n3bn- 1,k) = O. 

We cleverly construct 

Bn, k= 4(2n + 1) (k (2k  + 1) - (2n + 1) 2) (~)2(n~k)2, 

with the motive that 

Bn, e - B n ,  k -1  =(n  + 1)3(n~l)2(n+a+k) 2 -  

- (34n 3 +51n  2 + 27n +5) (~)2(n~k)2 + 

+ 3 , ' n - -  l ~ 2 [ n - -  l+k'~ 2 
n ( k ] ~  k 3 ,  

and, 0 mirabile dictu, the sequence {bn) does indeed satisfy 
the recurrence (2) by virtue of  the method of  creative tele- 
scoping (by the usual conventions: Bnk = 0 for k < 0 or 
k > n; note also that P(n) = 34n 3 + 51 n 2 + 27n + 5 implies 
P(n - 1) = - P ( - n ) . )  

The rest is plain sailing (or is it plane sailing?). We notice 
that 

(n + 1)3bn+l,kCn+l,k - P(n)bn, kCn, k + n3bn_l,kCn_l,k = 

= (Bn, k - Bn, k_l)cn, k + 

+ (n + 1)3bn+Lk(cn+l,k --cn, k) -- 

- n3bn-l,k(Cn, k - Cn-l,k). (9) 

Clearly 

1 k ( _ l ) m ( m _ l ) ! 2 ( n _ m _ l )  ! 
c,~ k - c . - 1 , k  - ~ + 

m=l  (n + rn)! 

_ 1 ~ ( ( - 1 ) m m ! 2 ( n - m - k ) !  

n 3 +rn=l n2(n +m)!  

_ (-- 1 ) m - l ( m - -  l ) !  

n2(n +m + 1)!]  

_ (-- 1 ) k k ! Z ( n - k - 1 ) !  

n2(n + k)! 

whilst not even a minor miracle is required to write down 
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Cn, k --  Cn, k_ 1 . After some massive reorganisation (9) be- 
comes 

An, k - A n ,  k_ 1 with An, k =Bn, kCn, k + 

+ 5 ( 2 n + 1 ) ( - 1 )  k lk (~)(n~k)  

n(n + 1) 

and we have completed C ) ,  and, in passing, proved @ .  
This of  course verifies Ap6ry's claim to have proved f(3) 
irrational. 

9. The Case of  ~'(2) 

The arguments required to deal with the exercises @ are 
quite similar to those already described. It may however 
be a kindness to the reader to reveal that it would be wise 
to take 

Bn, k = (k 2 + 3(2n + 1)k - l l n  2 - 9n - 2) (~)2(n~k), 

An, k =Bn, kCn, k + 3 ( - 1 )  n+k-1 (n - 1 ) !  
( k - l ) !  

Moreover 

On, k - O n  1 ,k=2( - -1 )  n + k - l k ! z ( n  k - l ) !  
n(n + k)! ' 

and 

bn = (~(1 +X/5))  4 

2~X/5+2X/5- 

(-~(1 + x/5-)) sn 
(l +O(n-1)) ;  (10) 

(also note that  if Q(n) = 11n 2 + 11n + 3 then Q ( n -  1) = 
- Q ( - n ) ) .  

10. What on Earth is Going  on  Here? 

Ap6ry's incredible proof  appears to be a mixture of  
miracles and mysteries. The dominating question is how 
to generalise all this, down to the Euler constant 7 and up 
to the general ~'(t)? Here we have, apparently, the tip of an 
iceberg which relates (1 + x/~)  4 to ~'(3) and (�89 + x/~-)) s 
to ~'(2); we have surprising identities ( ~  and ( ~ ) ,  and 
startling continued fractions (produced by Cohen for his 
Helsinki talk), (~)  and @ .  Does the complete berg look 
like this? For my part I incline to the view that much of 
what has been presented constitutes a mystification rather 
than an explanation. For example Richard Askey (Madison, 
Wisconsin) has pointed out to me that the sequences (bn } 
and (bn } may be recognized as special values of  certain 
hypergeometric polynomials; immediately the recurrences 
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(2) and (4) become identities relating hypergeometric func- 

tions and much of  the magic fades away. Unfortunately 
the difficulties remain, because not all that much is known 
about the higher generalisations of the classical hypergeo- 
metric functions. For  this, and other reasons, it  is however 
likely that one should think about  recurrences of  order 
greater than 2. This, incidentally, means that  the continued 

fractions consti tute a red herring. In any event Q obscures 
a fundamental miracle. Its convergents Pn/Qn are of  course 

such that the sequences {Pn} and {Qn} both satisfy 

Un+l = (34n3 + 51n2 + 27n + 5)U n - n6Un_1. 

The proof  works (not  because the continued fraction does 

not terminate; that  only works for regular continued frac- 

tions, but) because if  Uo = 1, U1 = 5 then it happens that 
(n!) 3 divides the integers Un; more honestly:  it is already 

enough (and is necessary) that for any initial integer 
values U0, U1, (n!) 3 always divides 211 . . . . .  n]3Un . An 
analogous miracle makes the recurrence 

Un+l = ( l l n  2 + l l n  + 3)Un +n4Un-1 

useful in proving the irrationality of  ~'(2). 9 These surprises 

generalise the following quite well known fact  (to which I 
was alerted by Frits  Beukers (Leiden)): the recurrence 

Un+ 1 = (6n + 3)Un - n2Un_l 

is such that n ! divides Un if U0 = 1, U1 = 3 ; and n ! divides 
[1 . . . . .  n] Un for all integer initial values Uo, U1. 

Exercise 

What are the higher analogues? 

Show that  if  

B(z) = (1 - 6z + z2) -1/2 = ~ bn Zn, 
n = O  

9 Tom Cusick (Buffalo) has noticed that the following recurrences 
also yield continued fractions converging to 7r2/6: 

nZun = (7n 2 - 7n + 2)u n_l + 8(n 1)2Un_2 

(one solution of which is ]~k)3), and 

n3un=2(2n- 1)(3n 2 -  3n+ l )un_  l+(4n 3 ) ( 4 n - 4 )  

(4n - 5)Un_ 2 

(A solution is 2;(]c)4 ). 

On first impression the first yields a worse irrationality degree 
for ~r 2 than that obtained by Ap&y, and the second does not 
yield irrationality at all Ap6ry's results are indeed remarkable. 

then the bn = Z n g=0 (~) (n~k), and all are integers. Find an 

expression for the an in 

A (z) = ( 1 - 6 z  + z2) -1/z 
z 

f ( 1 - 6 t + t 2 )  -1/2 dt = ~  an zn 
0 n = O  

and notice that the [1 . . . . .  n]an all are integers. Show that  

sequences {an} (ao = O, a I = 1) and {bn} (bo = 1, b 1 = 3) 
both satisfy 

nUn + (n -1 )Un-  2 = (6n - 3)Un-1. 

Now prove that there is a constant X such that 
A(z) - XB(z) = Zn=oCn zn has no singularity at 3 - 2x/2 .  
Deduce that then Cn = 0(~ -n)  with c~ = (1 + X/2-) 2 and con- 

clude that  it follows that log 2 has irrationality degree at 
most 4. 662 100 831 . . . .  

Of course Exercise (~ )  should remind us that  recur- 
rences may be quite irrelevant to the proof.  The vital thing 
then is suitable definition of  the Cn k, so one is brought 

to looking for generalisations'of Q~). But, for the back 

present, generalisation of  Ap6ry's  work remains, as they 
say, a mystery wrapped in an enigma, lO 

Most startling of  all though should be the fact that  
Ap6ry's  proof  has no aspect that would not  have been 

accessible to a mathematician of  200 years ago. The p roof  
we have seen is one that many mathematicians could have 

found, but  missed. 

This note was written at Queen's University, Kingston, Ontario 
whilst the author was on study leave from the University of 
New South Wales, Sydney, Australia. 

October, 1978 

Postscripts. See L. Lewin Dilogarithms and associated func- 
tions (Macdonald, London, 1958) for many delightful facts, 
including the trilogarithm formula of  4which is given at p. 

139. At p. 89 of  Louis Comtet  Advanced Combinatories 
(D. Reidel, Dordrecht, 1974) one is astonished to be asked 
to prove as an exercise that 

2nl _ 1 +  27rX/3 ; ~ n(2nn ) - 9 
n=l ( n )  3 27 n=l 

10 Well, not really. It is just that it is not at all clear where to go. 
A numerical test (suggested by Cohen) implies that ~'(4) = 7r4/90 
= (36/17) ~n=l (1/n4(2nn)) (so this is true for all practical pur- 
poses) and it has been shown by Gosper that 

5 ~176 (~22 + 1 1 4 ) (-1) n 
:(5)= +'"+(n 1)2 n3(p)" 
David Hawkins (Boulder) suggests similar formulas. Apparently 
such expressions can be generated vfftually at will on using 
appropriate series accelerator identities. 



1 _ ~r 2 ' 

n=l n2(Zn n) 18 '  

l~__= 1 7 J  

n=l n4(2n) 3,240 

Seeing that 

n=l n2(2n n) - 2  sin -1 

(see for example Melzak op cit p. 108) the first three 
formulae (and the one with the trilogarithm) become quite 
accessible to proof, but I had not detected anyone able to 
prove the expression for ~'(4), until I proved it in March 
1979 after noticing a remark of Lewin that also 

2 f x log 2sin d x = - -  
o 3,240 

Sam Wagstaff (Illinois) and Andrew Odlyzko (Bell Labs) 
have mentioned to me that numerical evidence suggests 
that there are formulae of the shape ( ~  or @ for ~'(t) 
only for t = 2, 3, 4 and this is verified by my studies in a 
current manuscript Some wonderful formulae. . .  . The 
recurrences 9 are long known, see Comtet op cit p. 90. 
One can recognise the b n as b n = 4/?3 (n~-l, -n,1 n;1, -n; 1) 
and determine the recurrence @ by way of three term 
relations with contiguous balanced series; see J. A. Wilson 
Hypergeometrie series, recurrence relations and some new 
orthogonalfunctions (Ph.D. thesis; U. Wisconsin-Madison, 
1978). 

Frits Beukers (Leiden) A note on the irrationality o f  
~'(2) and ~'(3) (J. Lond. Math. Soe. to appear) has found 
an elegant approach to Ap6ry's proofs which entirely 
avoids explicit identities, recurrences and other magic. 
Instead just consider 

1 1 Pn(x)Pn(Y) logxy 
I = - 1/2 f f dxdy = bn~'(3) - a n 

o o 1 - x y  

noticing that the b n are integers and the a n are rationals 
with the 2 [1 . . . . .  n] 3 a n integral, whilst 

II[ ~< ~(3) (1 - N / r 2 )  4 n  

1 d n 
here Pn(z) = n! dz n ( z n ( 1 - z ) n ) i s t h e  

Legendre polynomial. Again, there is no obvious way to 
generalise the proof. 
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In retrospect it seems clear that exercise @ really is 

useful; implications are being considered by Bombieri et al 
(at Princeton). For example, one's intuition is just wrong in 
feeling incredulity at the facts of @ .  All that these report 
is that the differential equation 

d I ( X  4 _ 3 4 X  3 + X  2) d3y 
d X  I ~ +  

+ (6X 3 -  103X 2 + 3X) d2y + 
d X  2 

+ ( 7 X  2 -  112X+ 1) dy + 
d X  

- 5 ) y  - (ul  - 5Uo)  } + (x 0 

has two G-function solutions, namely a(X) = 6 X + a2 X2 + ...; 

b(X) = 1 + b I X + b 2X 2 + . . . ;  and a ( X ) -  ~'(3)b(X) is regular 
(in fact vanishes) at ~' = (1 - x/2 )4. This is interesting, but 
no longer incredible; and it is readily generalisable.. .  All 
this too is an idea of Beukers. In keeping with the bizarre 
nature of the events reported here La Recherche No. 9 7 

(France's Scientific American) contained a report Roger 
Ap6ry et l'irrationnel by Michel Mendes-France; the report 
includes a lively description of the lecture at Marseille 
(politely suppressed here) although Mendes-France was in 
the U.S.A. at the time. 

Some officious readers have been critical of my casual 
use of the O-symbol; the fault is mine, not Ap6ry's. No 
harm is done. Similarly it has been claimed that Ap6ry's 
proof was not missed by Euler - 'Euler did not know the 
prime number theorem'; to me it seems hypercritical to 
suggest that [ 1 , . . . ,  n] = O((1 + w~-) 4n/3) could not have 
been noticed at the time, had it been needed. Anyhow, I 
considered it a racy title. It arose after Cohen's report at 
Helsinki, with someone sourly commenting 'A victory for 
the French peasan t . . . ' ;  to this Nick Katz retorted: 'No ...! 
No! This is marvellous! It is something Euler could have 
d o n e . . . '  
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