ИЗБРАННЫЕ  СТАТЬИ  И  ВЫСТУПЛЕНИЯ
 


О моих работах по топологии и топологической алгебре
Труды Мат. института АН СССР. — 1984. — Т. 168. — С. 236–249.

§ 1. Теорема двойственности и топологическая алгебра

Свою работу по топологии я начал ещё студентом Московского университета и опубликовал две научные работы [1, 2], связанные с теоремой двойственности Александера (Alexander [3]). Третьей моей работой была дипломная работа [4], в которой я сильно усовершенствовал две предыдущие.

Для того чтобы рассказать об этих трёх работах, я должен объяснить прежде всего, что такое теорема двойственности Александера. Всем хорошо известна теорема Жордана о том, что замкнутая кривая, расположенная на плоскости без самопересечения, разбивает плоскость ровно на две части, внутреннюю и внешнюю. Далеко идущим обобщением этой простой теоремы Жордана, которая, однако, доказывается не просто, является теорема двойственности Александера. Теорему двойственности Александера можно сформулировать только на основе введённых Пуанкаре циклов и гомологий между ними.

Первоначально Пуанкаре рассматривал циклы и гомологии между ними в многообразиях наглядно геометрически, но затем был вынужден ввести триангуляцию многообразий, и тем самым открыл путь для переноса понятий циклов и гомологий на комплексы.

Линейную форму ориентированных r-мерных симплексов комплекса K, взятых с некоторыми коэффициентами, стали называть в дальнейшем r-мерной цепью. При этом коэффициентами могут служить фактически элементы произвольной коммутативной аддитивной группы Γ. Обычно берётся аддитивная группа целых чисел или группа вычетов по модулю m. Определяется граница цепи, причём границей r-мерной цепи является (r–1)-мерная цепь. Если граница цепи равна нулю, то цепь называется циклом. Цикл называется гомологичным нулю, если он является границей некоторой цепи. Два цикла считаются гомологичными между собой, если их разность гомологична нулю. Таким образом, все r-мерные циклы комплекса K разбиваются на классы попарно гомологичных. Эти классы естественно образуют коммутативную аддитивную группу. Пуанкаре рассматривал только целочисленные коэффициенты и назвал число линейно независимых элементов этой группы числом Бетти, а числа, характеризующие подгруппу, состоящую из элементов конечного порядка, — коэффициентами кручения комплекса. Позже всю группу стали называть r-мерной группой гомологий комплекса K и обозначать через HΓr(K).

Если группа гомологий рассматривается по простому модулю p, то число её независимых элементов по модулю p называют числом Бетти по модулю p. Для непростого модуля m число Бетти определить невозможно. В теореме двойственности Александера речь идёт о числе Бетти по mod 2. Она формулируется следующим образом.

Пусть K — комплекс, криволинейно, но без самопересечений, расположенный в n-мерном евклидовом пространстве Rn. Тогда число Бетти P2r(Rn\K) no mod 2 размерности r пространства Rn\K равно числу Бетти P2nr–1(K) по mod 2 размерности nr–1 комплекса K.

В частном случае, когда K есть комплекс, гомеоморфный окружности, a Rn есть плоскость R2, r=0, теорема двойственности Александера превращается в теорему Жордана.

Доказательство теоремы двойственности Александера опирается на большое количество тонких геометрических конструкций. Появление её в 20-х годах было большим событием в области топологии.

Примерно в то же самое время, когда я познакомился с теоремой двойственности Александера, я познакомился также и с понятием коэффициента зацепления Брауэра.

Коэффициент зацепления был определён Брауэром для двух замкнутых ориентированных, т.е. определённым образом направленных замкнутых кривых, расположенных в трёхмерном пространстве R3 без взаимопересечения. Он определялся или как интеграл и тогда имел вполне определённый электротехнический смысл, или геометрически как алгебраическое число точек пересечения плёнки, натянутой на одну из замкнутых кривых, с другой замкнутой кривой. Коэффициент зацепления легко определяется для двух не пересекающихся между собой циклов размерности r и nr–1, расположенных в евклидовом пространстве Rn. Он есть целое число, если циклы берутся с целочисленными коэффициентами, и вычет по mod m, если циклы берутся по mod m.

В своей первой опубликованной работе я усилил теорему двойственности Александера и придал ей новый смысл, использовав коэффициенты зацепления. Мой результат можно формулировать следующим образом:

Пусть K — комплекс, криволинейно, но без самопересечений, расположенный в евклидовом пространстве Rn размерности n. Если zr — произвольный r-мерный, отличный от нуля класс гомологий пространства Rn\K, то в комплексе K найдётся такой класс гомологий znr–1 размерности nr–1, что коэффициент зацепления между классами zr и znr–1 отличен от нуля. Аналогично, если znr–1 — некоторый отличный от нуля класс гомологий комплекса K, то в пространстве Rn\K найдется класс гомологий zr размерности r, коэффициент зацепления которого с классом znr–1 отличен от нуля. Всё делается по mod 2.

Эта моя теорема устанавливала алгебраическую связь между группой гомологий H2r(Rn\K) пространства Rn\K и группой гомологий HΓr(K) комплекса K, которую я стал называть двойственностью. Из двойственности групп вытекал непосредственно и их изоморфизм, а следовательно, и теорема двойственности Александера. Хотя из двойственности групп и вытекает их изоморфизм, но изоморфизм этот не является единственным естественно определённым изоморфизмом. Таким образом, двойственность есть нечто другое, чем изоморфизм. Такую же двойственность легко установить между группами по mod m. Из неё также вытекает изоморфизм, однако этот изоморфизм не является естественно определённым и единственным. Таким образом, мой результат придал теореме двойственности Александера новый алгебраический смысл.

Значение моего результата заключалось также и в том, что вместо чисто негативного понятия негомологичности цикла нулю выступало новое позитивное понятие зацеплённости цикла с другим. Этот позитивный характер результата делает его эффективным средством исследований. Следует отметить, что при доказательстве своего результата я использовал все геометрические конструкции Александера.

Во второй своей работе я рассматривал комплекс K, криволинейно, но без самопересечений, расположенный в n-мерном многообразии Mn, а не в евклидовом пространстве Rn. Задача ставилась прежняя: изучить группы гомологий пространства Mn\K.

Вложение комплекса K в многообразие Mn влечёт за собой гомоморфизм группы гомологий комплекса K в группу гомологий многообразия Мn. Ядро этого гомоморфизма размерности nr–1 обозначим через Ĥ2nr–1(Mn\K). Точно так же включение области Mn\K в Mn влечёт гомоморфизм группы гомологий Mn\K в группу многообразия Mn. Ядро этого гомоморфизма мы обозначим через Ĥ2r(Mn\K).

Во второй моей опубликованной работе устанавливалась двойственность между группами Ĥ2nr–1(Mn\K) и Ĥ2r(Mn\K), осуществляемая при помощи коэффициентов зацепления. Делается это по mod 2. Кроме того, было установлено, при каких условиях класс гомологий многообразия Mn содержит цикл, не пересекающийся с K. Оказалось, что такими являются те классы гомологий, индексы пересечения которых с любыми циклами комплекса K дополнительной размерности равны нулю. Это было сделано по mod 2. Два этих результата давали достаточно полную информацию о числах Бетти по mod 2 многообразия Mn\K. Во второй своей работе я вновь использовал тонкие геометрические конструкции Александера.

В дипломной работе мной была сильно усовершенствована вторая работа как в алгебраическом, так и в геометрическом отношениях. В ней я обошёл геометрические трудности, рассматривая лишь прямолинейные комплексы, составленные из подразделений первоначальной триангуляции многообразия Mn, и для установления двойственности использовал барицентрические звёзды этих подразделений, как это делал Пуанкаре, отчего произошло сильное геометрическое упрощение. Переход к криволинейному комплексу осуществлялся путём аппроксимации его прямолинейными комплексами. Алгебраической основой исследования являлась двойственность между цепями, составленными из симплексов, и цепями, составленными из барицентрических звёзд. Всё делалось с целочисленными коэффициентами и по произвольному mod m. Вторая часть моего результата приобрела самостоятельное существование и стала называться теоремой о снятии цикла. В ней утверждалось, что для цикла многообразия Mn, индекс пересечения которого с каждым циклом из комплекса K равен нулю, существует гомологичный ему цикл, расположенный вне K. Теорема о снятии цикла позволила, в частности, дать оценку тонкого гомотопического инварианта категории многообразия Mn, введённого Люстерником и Шнирельманом для оценки числа замкнутых траекторий на многообразии гомеоморфном сфере. Определение категории многообразия, данное Люстерником и Шнирельманом, носило сугубо негативный характер, и потому вычисление её было очень затруднительным. Оценка её снизу при помощи теоремы о снятии цикла давала эффективную возможность находить категорию многообразия.

Для того чтобы рассказать о следующей своей существенной работе, связанной с теоремой двойственности Александера, остановлюсь на структуре группы Hr(K) комплекса K, построенной при помощи целых коэффициентов. Возьмём в этой группе подгруппу Hr(K), составленную из элементов конечного порядка. Тогда группа Hr(K) распадается в прямую сумму некоторой группы Lr(K) и группы Hr(K). Группа Lr(K) представляет собой прямую сумму конечного числа свободных циклических групп. Число их и есть число Бетти, определённое Пуанкаре. Числовые инварианты группы Hr(K) были названы Пуанкаре коэффициентами кручения.

В моей дипломной работе было установлено, в частности, что если комплекс K расположен в евклидовом пространстве Rn, то группы Lnr–1(K) и Lr(Rn\K) двойственны между собой посредством коэффициентов зацепления, являющихся целыми числами, но группа Hr(Rn\K) двойственна группе Hnr–2(K). Таким образом прямые слагаемые Lr(Rn\K) и Hr(Rn\K) однозначно определены комплексом K и не зависят от его расположения в пространстве Rn. В то время как я занимался этими вопросами, уже была определена группа гомологий произвольного компактного метрического пространства F по любому полю коэффициентов, так же как по целочисленному полю коэффициентов. Мне показалось, что для завершения проблемы двойственности необходимо установить, что если компактное множество F расположено в евклидовом пространстве Rn, то целочисленная группа гомологий его дополнения Rn\F есть инвариант самого множества F, а не зависит от его расположения в Rn. Трудность заключалась в том, что группа Hr(Rn\F) уже не была группой с конечным числом образующих и не распадалась в прямую сумму свободной группы и группы кручений, а потому не могла быть вычислена таким же образом, как это было сделано с комплексом. Я решил эту задачу, совершив очень нетривиальное действие, приняв за коэффициенты преобразований групп гомологий компактного множества F не целые числа, не вычеты по mod m, а совершенно новую группу K. Определение её следующее:

K есть фактор-группа аддитивной группы действительных чисел по подгруппе целых чисел. Таким образом, K представляет собой аддитивную запись группы вращения окружности и является топологической группой. Приняв за коэффициенты при построении группы гомологий компактному множеству F элементы группы K, я получил саму группу гомологий HKr(F) в виде компактной коммутативной топологической группы. Результат был следующим:

Пусть F — компактное подмножество n-мерного евклидова пространства Rn. HKnr–1(F) — группа гомологий размерности nr–1 компакта F, построенная при помощи коэффициентов из группы K. Через Hr(Rn\F) обозначим r-мерную группу гомологий пространства Rn\F, построенную при помощи целочисленных коэффициентов. Тогда группы HKnr–1(F) и Hr(Rn\F) двойственны между собой, причём двойственность определяется коэффициентами зацепления, которые являются элементами группы K. Таким образом, каждый элемент группы Hr(Rn\F) является гомоморфизмом группы HKnr–1(F) в группу K, т.е. характером группы HKnr–1(F). Точно так же каждый элемент группы HKnr–1(F) является гомоморфизмом группы Hr(Rn\F) в группу K. Таким образом, я показал, что каждая из двух рассматриваемых групп, находящихся в соотношении двойственности, является группой характеров для другой. Этот результат представляет собой очень интересный алгебраический факт, который привёл меня к постановке нового вопроса. Является ли каждая компактная коммутативная группа группой характеров некоторой дискретной коммутативной группы [8]?

Сейчас мне совершенно неясно, действительно ли этот вопрос возник в результате получения теоремы двойственности Александера для компактных подмножеств евклидова пространства. Трудно было прийти к мысли о взятии за коэффициенты элементов группы K и построении группы гомологий компактного метрического пространства в виде компактной топологической коммутативной группы, не имея понятия о топологических группах. Вероятнее всего, я пришёл к мысли об использовании элементов группы K в роли коэффициентов, уже имея какое-то представление о компактных коммутативных топологических группах и их характерах. Без этого использование группы K для коэффициентов кажется психологически неоправданным и непонятным скачком.

К проблемам топологической алгебры я подошёл ещё и совершенно с другой стороны. Именно, я доказал, что всякое связное локально-компактное тополого-алгебраическое тело изоморфно либо полю действительных чисел, либо полю комплексных чисел, либо телу кватернионов. Других возможностей нет. Этот результат имеет глубокий методологический смысл. Он показывает нам, что никаких объектов, аналогичных действительным и комплексным числам, не существует. Именно поэтому действительные и комплексные числа лежат в основе математического анализа. Этот результат был ответом на вопрос, поставленный А. Н. Колмогоровым. Случай коммутативного тела был разобран мной очень быстро, в течение недели или двух, что поразило Колмогорова, который сперва даже не поверил, что я смог с этим справиться. Но случай некоммутативного тела дался очень трудно. Я занимался им около года и разработал приёмы, которые позволили мне в дальнейшем изучить не только компактные, но и локально-компактные коммутативные группы.

Занимаясь топологической алгеброй, я изучил также компактные, вообще говоря, некоммутативные группы. Именно, доказал, что каждая такая группа является в некотором смысле пределом последовательности групп Ли [12].

Для доказательства того, что каждая компактная коммутативная группа Γ является группой характеров дискретной группы, достаточно было доказать, что, каков бы ни был отличный от нуля её элемент a, всегда существует такой гомоморфизм группы Γ в K, при котором элемент a не переходит в нуль. Для того чтобы изучить структуру компактной, вообще говоря, некоммутативной группы, достаточно было показать, что для каждого отличного от 1 элемента a этой группы существует гомоморфизм этой группы в некоторую группу Ли, при которой элемент a не переходит в 1.

При доказательстве этих фактов мной были использованы замечательный результат венгерского математика Хаара, который построил инвариантную меру на локально-компактных топологических группах, а также теория Германа Вейля линейных представлений компактных групп Ли, который использовал инвариантную меру на этих группах для нахождения представления групп Ли.

Получив результаты в топологической алгебре и изучив хорошо эту область, включая группы Ли, я пришёл к мысли написать монографию под названием «Непрерывные группы» [10], что и выполнил за два года. В монографию я включил не только свои собственные результаты по топологическим группам и по топологическим телам, но и теорию групп Ли. Книга скоро нашла широкое признание как в Советском Союзе, так и за границей — она была очень быстро переведена на английский язык в Америке по инициативе Лефшеца [11].

Занимаясь теоремой двойственности Александера, я заинтересовался её локальной формой, связанной с теорией размерности. Существовавшее в то время определение размерности компактного метрического пространства F носило чисто негативный характер. Оно выглядит следующим образом:

Если существует покрытие множества F некоторыми множествами, удовлетворяющее определённым условиям, то размерность этого множества не больше чем r. Таким образом, можно было эффективно установить, что размерность множества не превосходит r, но не было никакого средства установить, что она не меньше r. В дальнейшем так определённую размерность я буду называть обычной. П. С. Александров сделал первую попытку преодолеть это обстоятельство, дав положительное определение размерности при помощи гомологий. Именно, он определил размерность множества F по mod 2. Это определение размерности требовало существования в множестве F некоторой плёнки по mod 2, т.е. носило положительный характер. Александров выдвинул гипотезу, что обычная размерность эквивалентна гомологической размерности по mod 2. Я сразу увидел, что таким образом, как по mod 2, размерность можно определить по любому другому модулю. И сразу же построил множества F1 и F2, каждое из которых имело обычную размерность, равную 2 [5]. F1 имело размерность 2 по mod 2 и размерность 1 по mod 3, а множество F2 имело размерность 2 по mod 3 и 1 по mod 2. Таким образом, полностью исключалась эквивалентность обычной размерности с гомологической по какому бы то ни было модулю. Эти же два множества F1 и F2, как я показал, обладали тем замечательным свойством, что, имея оба обычную размерность, равную 2, они в своем произведении давали множество F1×F2 размерности 3, что противоречило существовавшей гипотезе о том, что при перемножении множеств обычные размерности складываются.

Александров и я, оба независимо друг от друга, занялись проблемой гомологической характеризации обычной размерности, т.е. нахождения для неё положительной формы. Но мы подходили к задаче с двух различных позиций. Александров искал внутреннее гомологическое определение размерности, эквивалентное обычной, а я пользовался расположением множества F в евклидовом пространстве Rn. Моя гипотеза заключалась в том, что множество F обычной размерности r, расположенное в Rn, в некоторой своей точке a образует гомологическое препятствие размерности nr–1. Именно, я стремился доказать, что в шаре H произвольного малого радиуса с центром в точке a можно найти цикл z размерности nr–1 с целочисленными коэффициентами, расположенный в H\F и негомологичный нулю в этом пространстве. Из этой теоремы, если бы она была доказана, сразу можно было бы извлечь и внутреннюю гомологическую характеристику обычной размерности. Я стал пытаться доказать это предложение.

Для двумерного множества F, расположенного в пространстве R3, оно довольно быстро было доказано мной и Франклем независимо друг от друга при помощи одной интересной конструкции, относящейся к узлам, расположенным в трёхмерном пространстве. Доказанное нами предложение означало, что двумерное множество в трёхмерном евклидовом пространстве локально разбивает это пространство по крайней мере на две части. Следующим шагом должно было быть доказательство того, что (n–1)-мерное множество F, расположенное в n-мерном евклидовом пространстве Rn, локально разбивает его также по крайней мере на две части. Эту теорему очень остроумно доказал Франкль. Я стал пытаться доказать теорему о препятствии для любой размерности r, идя по пути, намеченному мной и Франклем, и при этом столкнулся с некоторыми гомотопическими проблемами, которые стали предметом моих дальнейших занятий. Теорему о препятствии я доказать не сумел. Внутреннюю гомологическую характеристику обычной размерности получил П. С. Александров, и из неё следовало моё предложение о препятствии.

По теории размерности мной была сделана ещё одна работа, заслуживающая упоминания, не связанная непосредственно с гомологическими проблемами. Я доказал, что каждое компактное метрическое пространство обычной размерности r может быть гомеоморфно отображено в евклидово пространство размерности 2r+1 [6].


§ 2. Вычисление гомологий некоторых конкретных многообразий

Найти число Бетти конкретного многообразия при помощи триангуляции, т.е. при помощи разбиения многообразия на симплексы, является делом совершенно нереальным в силу чудовищной громоздкости. Для решения этой задачи нужно искать другие пути, связанные со способом задания многообразий. Одну такую интересную задачу я решил в 1935 г. [9]. Она была сформулирована Картаном в его докладе в Москве (1934 г.). Он предложил найти числа Бетти всех простых компактных групп Ли и предложил для решения свой алгебраический метод внешних форм. Простые группы Ли расклассифицированы, они составляют четыре основных серии и, кроме того, пять специальных особых групп. Я нашёл числа Бетти компактных групп Ли, входящих в четыре основные серии, пользуясь совсем другим методом, чем тот, который был предложен Картаном. Способ этот связан со следующей конструкцией Морса.

На некотором гладком многообразии M Морс рассматривает дифференцируемую функцию  f (x) точки x этого многообразия. Точка a многообразия M называется критической точкой функции  f (x), если в этой точке все первые производные функции  f (x) обращаются в нуль. Изучению критических точек посвящена работа Морса. Морс рассматривает поверхности уровня функции  f (x), т.е. поверхности, определяемые уравнением  f (x) = c, где с = const. Проводит на многообразии M траектории, ортогональные к поверхностям уровня. Вдоль этих траекторий можно продеформировать в многообразии M любое подмножество F. При этом только критические точки могут служить препятствием для деформации. Морс рассматривал только такие функции, которые имеют изолированные критические точки.

Моей целью было найти числа Бетти основных четырёх серий компактных групп Ли. Приём мой был приспособлен к изучению серии многообразий Ml, где l — номер многообразия, меняющийся от некоторой постоянной положительной величины до бесконечности. На многообразии Ml, я задал функцию  f (x) множества критических точек, которое составляло массивное подмножество многообразия Ml, причём одним из кусков этого массива было многообразие Ml–1. Опишу свой приём для случая, когда Ml есть группа ортогональных матриц порядка l,

x = || xij ||;       i, j = 1, ..., l.

Функция  f (x), заданная мной на Ml, в этом случае создаётся формулой

f (x) = x11.

Массив критических точек этой функции состоит из двух кусков: на одном x11 = f (x) = 1, на другом x11 = f (x) = –1. Первый кусок представляет собой группу Ml–1 ортогональных матриц порядка l–1, а второй является классом смежности этой подгруппы. Обозначим эти куски массива критических точек через Ml–1 и Ml–1. Будем считать, что траектории, ортогональные к поверхностям уровней функции  f (x), начинаются на подгруппе Ml–1 и упираются в многообразие Ml–1. Любое компактное подмножество F многообразия Ml, не пересекающееся с Ml–1, можно деформировать вдоль этих траекторий в многообразие Ml–1. Так открывается путь для нахождения чисел Бетти индуктивно по номеру l, начиная с многообразия M3, представляющего собой трёхмерное проективное пространство. Аналогичным образом были изучены и три другие серии компактных групп Ли.

Позже я применил этот приём к многообразию H(kl), причём многообразие H(kl) представляет собой совокупность всех k-мерных ориентированных плоскостей евклидова пространства Rk+l размерности k+l, проходящих через некоторую фиксированную точку О. Меняя индекс l, мы получаем серию многообразий, гомологии в которых можно изучать индуктивно. Многообразие H(k, 1) представляет собой, как легко видеть, k-мерную сферу. Мы имеем естественное вложение H(kl–1) Ì H(kl). Многообразие H(kl) было положено мной в основу определения характеристических классов, или так называемых классов Понтрягина, для гладкого многообразия Mk. Таким же способом я изучил гомологии некоторых других серий многообразий. Но важнейшими считаю результаты, относящиеся к четырем сериям простых групп Ли и к серии многообразий

H(k, l);       l = 1, 2, ...

Замечу в заключение, что в некоторых случаях мне было недостаточно только знать, что ортогональные траектории к поверхности уровня существуют, но нужно было вычислить их конкретно. Так, при изучении группы Ml ортогональных матриц надо было конкретно вычислить все траектории, ортогональные к поверхностям уровня, выходящие из единичного элемента подгруппы Hl–1, и посмотреть, где они кончаются на многообразии Ml–1. Таким образом, мне пришлось провести некоторые не вполне простые вычисления.


§ 3. Некоторые задачи гомотопической классификации отображений

Задача гомотопической классификации отображений одного пространства в другое являлась центральной задачей топологии в 1936 г., когда я начал ей заниматься. Чтобы сделать максимально понятными мои результаты в этой области и способ подхода к решению гомотопических задач, выбранный мной, напомню основные определения.

Будем рассматривать непрерывные отображения топологического пространства X в топологическое пространство Y. Обозначим через I числовой отрезок 0 ≤ t ≤ 1 и составим прямое топологическое произведение отрезка I на пространство X, т.е. множество всех пар (t, x), где tÎI, xÎX. Пусть Φ — непрерывное отображение произведения I×X в Y.

Положим Φ(tx) = φt(x). Отображение φt является отображением пространства X в пространство Y, непрерывно зависящим от параметра t. Говорят, что φt представляет собой непрерывную деформацию отображения φ0 в отображение φ1, а два отображения φ0 и φ1 пространства X в пространство Y считаются гомотопически эквивалентными или гомотопными. Таким образом, все непрерывные отображения пространства X в пространство Y разбиваются на классы гомотопных между собой отображений. Задача гомотопической классификации отображений пространства X в пространство Y заключается в нахождении всех гомотопических классов отображений пространства X в пространство Y. Отображение φ0 считается гомотопным нулю, если отображение φ1 переводит всё пространство X в одну точку пространства Y.

Пытаясь решить задачу о гомологической характеристике обычной размерности множества, я пришёл к задаче гомотопической классификации отображений сферы S k+l размерности k+l в сферу размерности l, где k — неотрицательное число, а l — произвольное натуральное число. К тому времени, как я занялся этой задачей, некоторые результаты уже были получены Хопфом. Именно, он решил задачу для k=0, а также дал целочисленный инвариант отображений трёхмерной сферы S 3 в двумерную сферу S 2. В 1936 г. я решил задачу для k=0 и произвольного l. Именно, доказал, что для l=2 хопфовский инвариант является единственным, а для l>2 существуют только два класса отображений сферы S 1+l в сферу S l. Замечу, что для k=0 Хопф нашёл единственный целочисленный инвариант отображения сферы S l в сферу Sl. Это степень отображения. Таким образом, к самому моменту, как я начал заниматься задачей, все известные случаи сводились к счётному числу класса отображений, а у меня получились только два отображения сферы S1+l в сферу Sl при l>2. Результат показался мне совершенно поразительным. В то же время я занимался задачей для kl=2. Совершив ошибку в вычислениях, я получил неправильный результат, который утверждал, что существует только один класс отображений сферы S 2+l в сферу S l. Позже, когда стал писать полное изложение работы, я исправил ошибку и установил, что число классов отображений сферы S 2+l в сферу S l равно двум. Моё первоначальное решение задачи для k=1, 2 было чудовищно сложно. Постепенно я его упростил. Изложу здесь основные этапы того упрощённого доказательства, которое получилось в конце концов в результате всех моих усилий.

Будем рассматривать отображение произвольного пространства X в сферу S l. Оказывается, что гомотопическую классификацию таких отображений можно локализовать следующим образом. На сфере S l выделим две диаметрально противоположные точки p и q — два полюса. Обозначим через Hε шар с центром в p радиуса ε в сфере S l. Оказывается, что если два отображения  f  и g пространства X в сферу S l совпадают на Hε, то они гомотопны между собой. Разъясним это высказывание. Обозначим через  f –1(Hε) и g–1(Hε) полные прообразы шара Hε в пространстве при отображениях  f  и g соответственно. Если имеет место равенство

 f –1(Hε) = g –1(Hε) = H̃

и для каждой точки x, принадлежащей множеству H̃, имеет место равенство  f (x) = g(x), то мы считаем, что отображения  f  и g совпадают на Hε.

Для доказательства того, что совпадающие на Hε отображения гомотопны между собой, построим такую деформацию φt отображения сферы S l в себя, что φ0 — тождественное отображение сферы S l на себя, а φ1 отображает весь шар Hε на S l и дополнение к нему в точку q. Деформацию φt опишем на одном определённом меридиане, идущем из северного полюса p сферы S l в южный полюс q. Пусть этот меридиан пересекает границу шара Hε в точке a0. Заставим теперь точку a0, равномерно двигаться из положения a0 по меридиану в южный полюс q так, чтобы она прошла этот путь за единицу времени. Одновременно будем растягивать равномерно отрезок [pa0] так, чтобы он покрыл весь меридиан [pq], а отрезок [a0q] сжимать так, чтобы он в конце времени сжался в точку q. Определив эту деформацию на каждом меридиане, получим нужную нам деформацию φt. Если отображения  f  и g совпадают на Hε, то отображения φtf ) и φt(g) при t=0 совпадают соответственно с  f  и g, а при t=1 совпадают между собой. Таким образом, отображения  f  и g гомотопны между собой, и наше утверждение доказано.

Локализация даёт возможность перейти к дифференциальному описанию отображений. Для этого будем рассматривать лишь аналитические отображения сферы S k+l на сферу S l. Это возможно, так как каждое непрерывное отображение можно аппроксимировать гомотопически эквивалентным ему аналитическим отображением. Теперь точку p можно выбрать так, что в каждой точке x из  f –1(p) функциональная матрица отображения  f  имеет максимальный ранг, равный l. Возьмем в точке x площадку Nx, ортогональную к Mk =  f –1(p). Площадка эта отображением  f  переводится в окрестность точки p взаимно аналитически с невырожденным определителем. Пусть ň1, ..., ňl — ортонормальная система векторов в точке p сферы S l. Прообраз вектора ňi на площадке Nx обозначим через ňl(x). Таким образом, в каждой точке многообразия Mk задана система линейно независимых векторов ň1(x), ..., ňl(x) ортогональных к Mk. Если два отображения  f  и g таковы, что соответствующие им многообразия Mk совпадают и системы линейно независимых векторов ň1(x), ..., ňl(x) также совпадают, то на достаточно малой окрестности Hε эти два отображения  f  и g близки друг другу по величинам второго порядка и, следовательно, могут быть переведены друг в друга. Отсюда следует, что отображения  f  и g гомотопны между собой. Ортонормируем теперь систему векторов ň1(x), ..., ňl(x) и обозначим полученную в результате этого систему векторов через n1(x), ..., nl(x). Многообразие Mk стало оснащённым. Именно, в каждой его точке x задана нормальная к нему ортогональная система векторов n1(x), ..., nl(x). Если для двух отображений  f  и g соответствующие им оснащённые многообразия Mk совпадают вместе с оснащениями, то ясно, что отображения эти гомотопически эквивалентны между собой. Таким образом, вопрос о гомотопической классификации отображений сферы S k+l в сферу S l сводится к классификации, с известной точки зрения, оснащённых многообразий Mk, расположенных в S k+l. От сферы S k+l размерности k+l легко перейти к евклидову пространству Rk+l размерности k+l и заданному в нём оснащённому многообразию Mk. Легко видеть теперь, что, если отображение  f0 можно аналитически перевести в отображение  f1, оснащённые многообразия M0k и M1k, соответствующие этим отображениям, в некотором смысле эквивалентны друг другу. Именно, они получаются друг из друга путём морсовских перестроек и соответствующих перестроек оснащений. Таким образом, вопрос о классификации отображений сферы M0k на сферу S l свёлся к классификации оснащённых многообразий, расположенных в R k+l [17].

Этот переход от отображений к оснащённым многообразиям даёт возможность легко проклассифицировать отображения сферы S k+l на сферу S l, т.е. заново получить известный результат Хопфа без особенного труда. Этот же способ дал мне возможность классифицировать отображения сфер в случае k=1, 2. До больших значений k мне продвинуться не удалось. При попытке совершить это продвижение я пришёл к понятию характеристических циклов.

Будем считать, что сфера S k+l ориентирована. Тогда и оснащённому многообразию Mk можно приписать некоторую вполне определённую ориентацию, например, следующим образом. Выберем её так, чтобы выписанная после ортонормальной системы n1(x), ..., nl(x), она давала положительную ориентацию пространства R k+l. Считая, что сфера S k+l ориентирована, мы можем отказаться от её индивидуализации при определении гомотопности отображений. Ведь мы определили гомотопность отображений для одной и той же сферы S k+l. Теперь мы будем говорить о гомотопности отображений двух различных сфер S0k+l и S1k+l, если обе они ориентированы. Для этого обозначим через φ некоторое гомеоморфное отображение сферы S0k+l на сферу S1k+l, сохраняющее ориентацию. Будем считать, что отображение  f0 сферы S0k+l гомотопно отображению  f1 сферы S1k+l, если отображения  f0 и  f1φ сферы S0k+l гомотопны между собой.

Отказ от индивидуализации сферы S k+l нужен для того, чтобы из всех отображений (k+l)-мерных ориентированных сфер в сферу S l составить аддитивную группу классов отображений.

Пусть  f1,  f2 — отображения сферы S1k+l и сферы S2k+l в сферу S l. В сферах S1k+l и S2k+l выберем такие точки a1 и a2, что  f1(a1) = f2(a2). Вырежем из сфер S1k+l и S2k+l малые шаровые окрестности K1 и K2 точек a1 и a2. Границы S1k+l–1 и S2k+l–1 этих шаровых окрестностей будем считать ориентированными в соответствии с ориентацией самих сфер. Пусть φ — некоторое гомеоморфное отображение сферы S1k+l–1 на сферу S2k+l–1, при котором положительная ориентация первой сферы переходит в отрицательную ориентацию второй сферы. Изменим теперь отображения  f1 и  f2 сперва таким образом, чтобы отображения  f1 и  f2 сферы S1k+l–1 совпадали между собой. Выкинем теперь из сфер S1k+l и S2k+l шаровые окрестности K1 и K2. Оставшиеся части сфер склеим между собой по границам S1k+l–1 и S2k+l–1, идентифицируя точки, соответствующие друг другу при отображении φ. Полученная в результате этого склеивания из сфер S1k+l и S2k+l сфера S3k+l ориентирована и отображена в сферу S l определённым образом. Это отображение обозначим через  f3. Гомотопический класс отображений, которому принадлежит отображение  f3, по определению считается суммой гомотопических классов отображений  f1 и  f2. Таким образом, гомотопические классы отображений ориентированных сфер S k+l в сферу S l организованы в коммутативную аддитивную группу. Для получения элемента группы, противоположного тому, который содержит класс отображения  f1, достаточно изменить ориентацию сферы S1k+l на противоположную. Если M1k, M2k — оснащённые непересекающиеся многообразия, соответствующие отображениям  f1 и  f2, то отображению  f3, соответствует оснащённое многообразие M3k, получающееся простым объединением M1k и M2k.

Дадим теперь способ построения из класса отображений сферы S k+l в сферу S l некоторого класса отображений сферы S k+l+1 в сферу S l+1. Пусть Mk — некоторое оснащённое многообразие, расположенное в Rk+l. Включим пространство Rk+l в пространство Rk+l+1 и добавим к ортонормальной системе n1(x), n2(x), ..., nl(x), заданной в точке x многообразия Mk, ещё один вектор nl+1(x), идущий в пространстве Rk+l+1 перпендикулярно пространству Rk+l. Так полученное оснащённое многообразие M̃k, исходящее из многообразия Mk, определяет класс отображений сферы S k+l+1 в сферу S l+1, который будем называть надстройкой над исходным классом.

Докажем, что при l>k каждый класс отображений (k+l+1)-мерной сферы S k+l+1 в (l+1)-мерную сферу S l+1 является надстройкой. Будем считать, что l>k и пусть M̃k — некоторое оснащённое многообразие, расположенное в пространстве Rk+l. Каждой паре точек (xy) многообразия M̃k поставим в соответствие направление той прямой, которая проходит через эту пару точек. Мы не исключаем пары вида x=y. Соответствующее ей направление касательно к многообразию Mk. Многообразие всех указанных направлений обозначим через N 2k, так как размерность его равна 2k. Поскольку размерность множества всех направлений, имеющихся в пространстве Rk+l+1, равна k+l и k+l>2k, то найдётся в Rk+l+1 такое направление, что проектирование вдоль него на ортогональное к нему подпространство Rk+l многообразия M̃k не даёт особенностей. Проектирование многообразия M̃k на многообразие Mk можно осуществить в форме непрерывной деформации, в результате которой ортонормальная система, имеющаяся на M̃k, перейдёт в некоторую ортонормальную систему на многообразии Mk.

Таким образом, каждой точке x многообразия Mk соответствует ортонормальная система n1(x), ..., nl+1(x). Теперь мы непрерывно продеформируем эту ортонормальную систему так, чтобы вектор nl+1(x) стал вектором n, нормальным пространству Rk+l. Координаты единичного вектора n в ортонормальной системе n1(x), ..., nl+1(x) обозначим через ξ1(x), ..., ξl+1(x). Координаты вектора nl+1(x) в этой ортонормальной системе суть (0, 0, ..., 0, 1). Координаты ξ1(x), ..., ξl+1(x) определяют точку n(x) в единичной сфере Ωl; n(x) есть отображение многообразия Mk в сферу Ωl. Поскольку l>k отображение n можно продеформировать в одну точку nl+1(x). Пусть φt(x) — эта деформация. Будем считать, что φ0(x) есть точка nl+1(x), а φ1(x) = n(x). Деформация φt(x) даёт движение точки nl+1(x) в точку n(x). Это движение вектора nl+1(x) можно распространить на движение всей ортонормальной системы.

Таким образом, мы продеформировали исходную ортонормальную систему n1(x), n2(x), ..., nl+1(x), таким образом, что последний вектор её стал нормальным к подпространству R k+l, и потому полученное нами оснащённое многообразие Mk является надстройкой.

Аналогично доказывается, что если l>k+1 и две надстройки дают гомофонически эквивалентные отображения, то исходные оснащённые многообразия также дают гомотопически эквивалентные отображения.

Итак, установлено, что при l>k оснащённое многообразие Mk, расположенное в Rk+l+1, эквивалентно надстройке Mk, расположенной в Rk+l, и что при l>k+1 эквивалентность таких двух надстроек равносильна эквивалентности оснащённых многообразий. Таким образом, группа отображений сферы S k+l в сферу S l стабилизируется при lk+2. Группа отображений сферы S 2k+2 на S k+2 является фактор-группой отображений сферы S 2k+1 на сферу S k+1. В частности, при k=1 группа отображений сферы S 3 на сферу S 2 является свободной циклической группой, а группа отображений S l+1 в S l при l>2 — циклическая второго порядка.

Постараюсь дать здесь объяснение причины этого явления. Пусть R2 — плоскость, лежащая в евклидовом пространстве Rl+1, M1 — единичная окружность с центром в точке O в плоскости R2. Обозначим через n10(x) единичный вектор, выходящий из точки x окружности M1, направленный перпендикулярно к ней наружу и лежащий в плоскости R2, а через n2, n3, ..., nl, обозначим некоторую ортонормальную систему векторов, перпендикулярных к R2 и расположенных в Rl+1. Если эти векторы, параллельно перенесённые в точку x, обозначить через n20(x), ..., nl0(x), то окружность M1 с ортонормальной системой n10(x), ..., nl0(x) представляет собой одномерное оснащённое многообразие. Пусть теперь n1(x), n2(x), ..., nl(x) — некоторое произвольное оснащение многообразия M1. Переход от ортонормальной системы n10(x), n20(x), ..., nl0(x) к системе n1(x), n2(x), ..., nl(x) даётся ортогональной матрицей порядка l, которую мы обозначим через h(x); h даёт нам отображение окружности M1 в группу H1 ортогональных матриц порядка l. H2 представляет собой окружность, и мы имеем счётное число классов отображений окружности M1 в окружность H2. В случае l>2 имеются только два класса отображения окружности M1 в группу Hl. Этим и объясняется тот факт, что группа классов отображений S 3 в S 2 есть свободная циклическая, а группа отображений S l+1 в S l при l>2 — циклическая второго порядка.


§ 4. Характеристические классы гладких многообразий [16]

После того как я установил, что оснащённые многообразия играют важную роль в гомотопической теории, я занялся многообразиями, гладко расположенными в евклидовом пространстве. Первый вопрос, который здесь естественно возникает, заключается в следующем: при каких условиях многообразие Mk, расположенное гладко в евклидовом пространстве Rk+l, может быть оснащено? В каждой точке x многообразия Mk проведём полную нормаль Nxl к многообразию Mk в евклидовом пространстве Rk+l. В каждом отдельном евклидовом пространстве Nxl при фиксированном x, конечно, можно выбрать ортонормальную систему из l векторов. Но можно ли выбрать эти ортонормальные системы в каждом Nxl так, чтобы они непрерывно зависели от x, непосредственно не видно и, как показывают примеры, не всегда можно. Таким образом, возникла задача какого-то исследования совокупности всех нормалей Nxl в точках многообразия Mk. От нормали естественно было перейти к касательным. В каждой точке x ориентированного многообразия Mk проведём касательную к многообразию Mk плоскость Tx размерности k. Для того чтобы изучить совокупность всех нормалей Nxl, можно изучать совокупность всех касательных Tx. Для этого изучения я рассмотрел многообразие H(kl), состоящее из всех k-мерных ориентированных плоскостей пространства Rk+1, проходящих через заданную точку О, и поставил в соответствие каждой касательной плоскости Tx плоскость Т(x) размерности k, проходящую через О и параллельную Tx. Функция Т(x), ставящая в соответствие каждой точке x многообразия Mk точку Т(x) многообразия H(kl), даёт нам гладкое отображение T многообразия Mk. Отображение это я назвал тангенциальным, и естественно предположить, что его гомологические свойства должны в какой-то степени отражать свойства многообразия Mk. Гомологические свойства отображений одного многообразия в другое есть вещь вполне определённая, но описать эти свойства можно по-разному. Я выбрал следующий способ описания. Обозначим через n размерность многообразия H(kl), и пусть z — некоторый цикл многообразия H(kl) размерности (nk+r). На многообразии T(Mk) цикл z высекает некоторый цикл, который обозначим zr, а его прообраз в многообразии Mk обозначим через zr. Класс гомологий цикла z многообразия H(kl) однозначно определяет класс гомологий цикла z в многообразии Mk. Цикл zr я назвал r-мерным характеристическим циклом многообразия Mk, а его класс гомологий — r-мерным характеристическим классом.

Легко доказывается, что при достаточно большом l характеристический класс является инвариантом гладкого многообразия Mk, т.е. не зависит от расположения Mk в евклидовом пространстве Rk+l. Тангенциальное отображение T является естественным обобщением так называемого сферического отображения многообразия Mk, расположенного в евклидовом пространстве Rk+1. Оно отображает многообразие Mk в сферу Sk. Сферические отображения многообразия рассматриваются уже давно как в дифференциальной геометрии, так и в топологии. Известно было, что степень сферического отображения многообразия Mk на сферу Sk является топологическим инвариантом многообразия Mk, а именно, равна половине его эйлеровой характеристики. В дифференциальной геометрии из сферического отображения получается гауссова кривизна многообразия Mk, а её интеграл по всему многообразию Mk называется интегральной кривизной. Таким образом, данная мной конструкция была далеко идущим обобщением известной конструкции.

Введённые мной характеристические классы гладких многообразий подверглись в дальнейшем широкому изучению другими математиками. Я же сделал с ними довольно мало. Первая попытка заключалась в том, чтобы доказать топологическую инвариантность характеристических классов, но это мне не удалось. Задача была решена много позже С. П. Новиковым. Я же сам дал для характеристических классов другие определения при помощи систем векторных полей, заданных на многообразии Mk и при помощи риманова тензора многообразия Mk, пользуясь дифференциальной геометрией.


§ 5. Другие гомотопические результаты

Кроме описанных, мной были получены некоторые результаты по классификации отображений комплекса Kl+r размерности l+r в сферу Sl [14] и при изучении таких отображений был введен квадрат Ñ-цикла размерности l, представляющий собой Ñ-цикл размерности l+2. Позже американский математик Стинрод дал более общее определение квадрата Ñ-цикла, чем я. Кроме того, мной были получены некоторые результаты по классификации отображений сферы в комплексы [15].


ЛИТЕРАТУРА
1.

Pontrjagin L. S. Zum Alexanderschen Dualitätssatz. — Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 1927, H. 4, S. 315–322. назад к тексту

2.

Pontrjagin L. S. Zum Alexanderschen Dualitätssatz. — Zweite Mitt. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 1927, Bd. 4, S. 446–456. назад к тексту

3.

Alexander J. W. A proof and extension of the Jourdan—Brouwer separation theorem. — Trans. Amer. Math. Soc., 1932, vol. 23, p. 333–349. назад к тексту

4.

Pontrjagin L. S. Über den algebraischen Inhalt topologischer Dualitätssatze. — Math. Ann., 1931, Bd. 105, H. 2, S. 165–205. назад к тексту

5.

Pontrjagin L. S. Sur une hypothese fondamentale de la theorie de la dimension. — C. r. Acad. sci., 1930, vol. 190, p. 1105–1107. назад к тексту

6.

Pontrjagin L. S., Tolstowa G. Bowels des Mengerschen Einbettungsatzes. — Math. Ann., 1931, Bd. 105, H. 5, S. 734–745. назад к тексту

7.

Pontryagin L. S. The general topological theorem of duality for closed sets. — Ann. Math., 1934, vol. 35, № 4, p. 904–914.

8.

Pontrjagin L. S. The theory of topological commutative groups. — Ann. Math., 1934, vol. 35, № 2, p. 361–388. назад к тексту

9.

Понтрягин Л. С. Числа Бетти компактных групп Ли. — Докл. АН СССР, 1935, т. 1, № 7–8, с. 433–437. назад к тексту

10.

Понтрягин Л. С. Непрерывные группы. — М.–Л.: Гостехтеориздат, 1938. назад к тексту

11.

Pontryagin L. S. Topological groups. — London: Princeton Univ. Press, 1939. назад к тексту

12.

Понтрягин Л. С. Структура компактных топологических групп. — В кн.: Тр. второго Всесоюз. мат. съезда, Ленинград, 24–30 июня 1934 г. М.–Л.: Изд-во АН СССР, 1936, т. 2, с. 135. назад к тексту

13.

Pontriaguine L. Sur le transformations des spheres en spheres. — In: C. r. congr. intern. math. Oslo, 1936, 1937, vol. 2, p. 140.

14.

Понтрягин Л. С. Классификация непрерывных отображений комплекса на сферу. — Докл. АН СССР, 1936, т. 19, № 3, с. 147–149. назад к тексту

15.

Понтрягин Л. С. Отображения трехмерной сферы в комплекс. — Докл. АН СССР, 1942, т. 34, № 2, с. 39–41. назад к тексту

16.

Понтрягин Л. С. Характеристические циклы многообразий. — Докл. АН СССР, 1942, т. 35, № 2, с. 35–39.

17.

Понтрягин Л. С. Гладкие многообразия и их применение в теории гомотопий. — М.: Изд-во АН СССР, 1955 (Труды МИРАН, т. 45). назад к тексту





Оптимизация и дифференциальные игры
Доклад на заседании Президиума АН СССР 22 декабря 1977 г.
Впервые опубликовано в «Вестнике АН СССР», 1978, № 7, с. 10–17.

Вопрос о том, чем следует заниматься, стоит для математиков, быть может, острее, чем для специалистов в других областях знания. Математика, возникшая как чисто прикладная наука, и в настоящее время имеет своей основной задачей изучение окружающего нас материального мира с целью использования его для нужд человечества. В то же время она имеет свою внутреннюю логику развития, следуя которой математики создают понятия и даже целые разделы, являющиеся продуктом чисто умственной деятельности, которые никак не связаны с окружающей нас материальной действительностью и не имеют в настоящее время никаких приложений. Эти разделы зачастую обладают большой стройностью и некоторого рода красотой. Однако такого рода красота не может служить оправданием их существования. Математика не музыка, красоты которой доступны большому количеству людей. Математические красоты могут быть поняты лишь немногими специалистами. Создавая такие красоты, математики практически работают только на себя.

Невозможно, однако, утверждать, что обладающие внутренней стройностью, но лишенные приложений разделы математики не имеют права на существование. Они составляют внутреннюю ткань науки, иссечение которой могло бы привести к нарушению всего организма в целом. Кроме того, оказывается, что некоторые отделы математики, лишённые приложений в течение многих веков, позже находят эти приложения. Классическим примером служат кривые второго порядка, созданные в древности из внутренних потребностей науки и нашедшие лишь позже очень важное применение. С другой стороны, некоторые разделы математики, занимающиеся лишь внутренними проблемами, постепенно вырождаются и почти наверняка оказываются ни для чего не нужными.

В этой обстановке вопрос о выборе тематики исследований становится для математиков весьма тревожным. Я считаю, что если не все, то во всяком случае многие математики должны в своей работе обращаться к первоисточникам, то есть к приложениям математики. Это необходимо как для того, чтобы оправдать своё существование, так и для того, чтобы влить новую свежую струю в научные исследования.

Исходя из этих соображений, а также находясь под некоторым давлением руководства Математического института им. В. А. Стеклова, я и три моих сотрудника Е. Ф. Мищенко, Р. В. Гамкрелидзе и В. Г. Болтянский решили заняться поиском прикладных тем для своих исследований в теории колебаний, точнее в математическом изучении электронных приборов и в теории регулирования, которую более общо теперь разумнее назвать теорией управления. Мы заранее исключили из своего рассмотрения математические задачи, уже сформулированные техниками, а основали свой поиск на ознакомлении с техническими проблемами, устанавливая контакты с многими специалистами в области техники. При этом мы не просто стремились найти приложения математики, но старались найти новые постановки математических задач, интересные с точки зрения самой математики.

Среди многих технических задач, с которыми мы ознакомились, была следующая. Некий специалист в области авиации сказал: «Если один самолёт преследует другой самолёт, то пилот преследователя, конечно, умеет это делать, но интересно было бы иметь теорию, быть может, даже такую, которая позволяла бы осуществлять преследование при помощи автомата». Мы все понаслышке знаем, что существуют самонаводящиеся ракеты. Но ракета обладает такими преимуществами в скорости и маневренности перед самолётом, что теория, на которой основано её поведение, может быть очень грубой.

Хочу сразу обратить внимание на странность этой задачи, которая на первых порах казалась нам совершенно неприступной. В самом деле, самолёт-преследователь очевидным образом не должен лететь в то место, где в настоящее время находится убегающий самолёт, так как последний, конечно же, уйдёт с того места, где он сейчас находится. В то же время бессмысленно предполагать, что убегающий самолёт движется по прямой: он может повернуть, причём неизвестно куда.

Задача о преследовании одного самолёта другим самолётом, насколько я знаю, до сих пор не решена. Рассмотрены упрощённые модели преследования, которые составляют предмет так называемой теории дифференциальных игр. Слово «игра» указывает на то обстоятельство, что будущее поведение каждого из самолётов неизвестно: оно зависит от воли пилота. Дифференциальной эта игра называется потому, что закон движения самолёта описывается дифференциальными уравнениями.

Для того чтобы применить математику к решению какой-либо технической задачи, прежде всего надо дать её математическое описание. В данном случае мы начнём с математического описания движения самолёта. При этом, как всегда это делают математики, мы будем отвлекаться от излишней конкретности, стремясь уловить лишь главные характерные черты технической задачи, подлежащей решению. Мы будем рассматривать самолёт как точку, движущуюся в пространстве. Известно, что положение точки в пространстве определяется тремя координатами. Их мы обозначим через x1, x2, x3. Так как точка (самолёт) движется, то она имеет и некоторую скорость-вектор. Компоненты этого вектора мы обозначим через x4, x5, x6. Величины x1, x2, ..., x6 определяют состояние движущейся точки в данный момент времени и называются её фазовыми координатами. Для того чтобы отвлечься от излишней конкретности, мы будем рассматривать объект, состояние которого в данный момент времени определяется не шестью, а произвольным числом фазовых координат. Их мы обозначим через x1, x2, ..., xn. Совокупность всех этих величин вместе принято обозначать одной буквой, так что мы полагаем x = (x1, x2, ..., xn). Здесь x есть точка фазового пространства нашего объекта, или фазовый вектор нашего объекта. Произвольную фазовую координату объекта обозначают через xi, где i может принимать любое значение: i = 1, 2, ..., n. Так как состояние объекта меняется со временем, то величина xi также меняется со временем, и скорость её изменения обозначается обычно через xi′. Это есть производная величины xi по времени t. Физическая закономерность поведения объекта, как правило, заключается в том, что скорость xi изменения фазовой координаты xi нашего объекта однозначно определяется фазовыми координатами объекта x1, x2, ..., xn, что математически записывается в виде формулы

 xi′ = f(x1, x2, ..., xn) = f(x),     i = 1, 2, ..., n. (1)

Это значит, что xi есть функция величин x1, x2, ..., xn, то есть может быть вычислена, если величины x1, x2, ..., xn известны. Здесь мы имеем n неизвестных величин x1, x2, ..., xn, которые меняются со временем, то есть являются функциями времени: xi = xi(t), и n дифференциальных уравнений, так что задачу можно решать математически, то есть получить закономерность изменения состояния объекта со временем, найти x как функцию времени: x = x(t).

При помощи уравнений вида (1) могут быть описаны весьма разнообразные объекты. Объекты могут быть не только механическими, но и другого рода, например, химический процесс может быть описан уравнениями типа (1). В этом случае массы различных веществ, входящих в реакцию, являются фазовыми координатами x1, x2, ..., xn нашего объекта. Такими же уравнениями может быть описан и биологический процесс, например сосуществование на острове волков, зайцев и травы. Экономические закономерности также допускают описание при помощи системы уравнений типа (1).

Приведённое здесь описание движения самолёта не содержит главного для нас элемента. В самолёте сидит пилот, который по своей воле может менять закономерность его движения, приводя в действие рули управления. Так, пилот может менять тягу двигателя, положение хвостового руля, положение закрылков. Положение каждого из элементов управления определяется некоторым числом. Все эти числа мы обозначим через u1, u2, ..., ur, а их совокупность обозначим одной буквой, положив u = (u1, u2, ..., ur). Здесь u есть вектор, компоненты которого определяют положение рулей. Таким образом, движение самолёта описывается не уравнениями (1), а уравнениями

 xi′ = f(x, u),     i = 1, 2, ..., n, (2)

где в правую часть входит вектор управления u. Вектор управления u меняется со временем по воле пилота самолёта и потому является заданной функцией времени: u = u(t). Таким образом, уравнения (2) в действительности имеют вид

 xi′ = f(x, u(t)),     i = 1, 2, ..., n, (3)

где u(t) есть конкретно осуществляемое в течение времени управление объектом. Систему уравнений (3) уже можно решать.

Следует отметить одно очень важное обстоятельство. Величины u1, u2, ..., ur, определяющие положение рулей, не могут быть произвольными. Так, если u1 есть величина тяги двигателя, то ясно, что она может меняться лишь в некоторых пределах от 0 до некоторой величины a: 0 ≤ u1a. Точно так же и хвостовой руль может поворачиваться лишь в определённых пределах, так что если u2 есть угол его поворота, то он удовлетворяет некоторым неравенствам: bu2b.

Чтобы отвлечься от излишней конкретности, мы можем просто сказать, что вектор u не есть произвольный вектор r-мерного пространства, а принадлежит некоторому заданному множеству этого пространства. Система дифференциальных уравнений (2) вместе с заданным множеством Ω даёт математическое описание возможностей поведения управляемого объекта. Такой объект мы будем называть управляемым, поскольку поведение его зависит от того, какой функцией u(t) времени t является управление u объекта.

Для того чтобы начать решать задачу о преследовании одного самолёта другим самолётом, мы должны были бы и второй самолёт описать в виде управляемого объекта, а затем точно сформулировать задачу преследования. Но, как я уже сказал раньше, сама игровая постановка задачи содержит в себе настолько большую странность, что мы предпочли вначале попытаться решить другую задачу, в которой элемент игры отсутствует. Мы предположили, что второй объект неподвижен, или, говоря в терминах самолёта, речь стала идти о том, чтобы перевести самолёт из одного состояния в другое за кратчайшее время.

Математически эта задача формулируется так. В начальный момент времени задаётся некое исходное фазовое состояние объекта, которое мы обозначаем через x0. Кроме того, имеется какое-то другое фазовое состояние объекта — x1. Если, управляя объектом каким-нибудь способом, мы можем перевести его из фазового состояния x0 в фазовое состояние x1, то возникает задача о том, каково должно быть управление, которое переводит объект из фазового состояния x0 в фазовое состояние x1 в кратчайшее время. Это есть задача оптимизации на быстродействие. Получаемое в результате решения этой задачи управление u(t) называется оптимальным в смысле быстродействия, а само движение объекта оптимальным движением в смысле быстродействия.

Если в процессе движения объекта меняется не только время, но и какая-либо другая величина, представляющая для нас особый интерес, например, расходуется топливо, то можно поставить вопрос об оптимизации расхода топлива при переходе из состояния x0 в состояние x1. Такая задача весьма важна, например, при рассмотрении перехода космического корабля с одной орбиты на другую, где минимальность расхода топлива играет огромную роль.

Так сформулированную задачу оптимизации могло бы решать вариационное исчисление, если бы не было ограничения на управляющий вектор u, то есть если бы вектор u был произвольным вектором. То обстоятельство, что вектор u принадлежит к заданному множеству Ω, сразу выводит сформулированную задачу оптимизации из круга тех, которые способно решать классическое вариационное исчисление. Если вектор u произволен, то сформулированная задача является задачей классического вариационного исчисления. Но следует отметить, что она никогда не решалась в вариационном исчислении в той постановке, в какой она приведена здесь. Сформулированные в классическом вариационном исчислении задачи носят более общий характер, чем приведённая здесь, и лишены той конкретности, которая возникла у нас благодаря рассмотрению технического объекта. Оказалось, что этот более конкретный характер вариационной задачи, связанный с тем, что мы рассматриваем управляемый объект, привёл к новым возможностям решения самой задачи, дал возможность прийти к догадкам, к которым в общей вариационной задаче прийти было бы чрезвычайно трудно.

Формулирую теперь то решение, которое было получено нами для задачи на быстродействие. Вводятся вспомогательные величины ψ1, ψ2, ..., ψn числом n, совокупность которых обозначается одной буквой ψ = (ψ1, ψ2, ..., ψn). Составляется вспомогательная величина

H = ψ1 f1(x, u) + ψ2 f2(x, u) + ... + ψn fn(x, u) = H(ψ, x, u). (4)

Сразу видно, что величина H зависит от трёх векторов: ψ, x и u. Новая вспомогательная величина (4) была обозначена через H потому, что нужные для нас уравнения, получаемые из неё, очень похожи на уравнения Гамильтона, всем известные из механики. Они суть следующие:
ì
 xi′ =   ∂H(ψ, x, u

ψi

 ,
í
î
 ψi′ = –   ∂H(ψ, x, u

xi

 .
(5)

Полученная система дифференциальных уравнений (5) состоит из 2n уравнений. В них входят неизвестные функции x1, x2, ..., xn,  ψ1, ψ2, ..., ψn,  u1, u2, ..., ur, то есть число неизвестных функций равно 2n + r. Таким образом, система эта неполна. Решать её невозможно. Однако эта система уравнений дополняется одним условием. Управляющий вектор u должен выбираться так, чтобы при любых фиксированных значениях ψ, x функция H(ψ, x, u) достигала своего максимума при этом значении u. Дополненная этим условием система уравнений (5) уже является полной, и именно эта система соотношений должна решаться при отыскании оптимального по быстродействию решения задачи.

Этот результат был назван принципом максимума. Задача на оптимизацию какой-либо другой величины, а не времени, например расхода горючего, решается очень похожим образом. Здесь я не формулирую её решения. Целью движения объекта мы считаем определённое его фазовое состояние x, то есть прибытие точки в определённое место с определённой скоростью. Принцип максимума годен, однако, и для решения других задач, например целью может служить прибытие в определённое место с произвольной скоростью.

Если управляющий вектор u может принимать произвольные значения, а не связан условием принадлежности к множеству Ω, то из условия максимальности функции H(ψ, x, u) по переменному u следует, что все частные производные этой функции по переменным u1, u2, ..., ur равны нулю, то есть должны быть выполнены r соотношений

 ∂H(ψ, x, u

uj

 = 0,     j = 1, 2, ..., r.
(6)

Этот результат вытекает из общих результатов классического вариационного исчисления, но в такой форме он никогда не был сформулирован, так как в классическом вариационном исчислении вообще не рассматривались управляемые объекты. Следует отметить также, что и в случае произвольно меняющегося u соотношение (6) слабее, чем условие максимальности H по u.

Дадим теперь решение одной очень простой задачи оптимизации на быстродействие, которое можно получить при помощи принципа максимума, но невозможно получить методами классического вариационного исчисления.

Рассмотрим математический маятник, то есть движение некоторой точки по прямой, которая притягивается к некоторой фиксированной точке 0 этой прямой с силой, пропорциональной расстоянию до неё. Прямую, по которой движется точка, примем за ось абсцисс, а точку 0 — за начало координат. Координату движущейся точки обозначим через х. Тогда уравнение движения этой точки запишется в виде

x″ + x = 0, (7)

где x″ есть вторая производная координаты x по времени, то есть ускорение движущейся точки. Одно уравнение (7) можно переписать в виде двух уравнений первого порядка

ì  x′ = y,
í
î  y′ = –x.
(8)

Пусть x = x(t), y = y(t) — произвольное решение системы (8). Для геометрического его изображения рассмотрим на фазовой плоскости переменных (x, y) точку [x(t), y(t)], движущуюся с течением времени t. Получаемая в результате движения точки по фазовой плоскости траектория называется фазовой траекторией. Для системы (8) она представляет собой окружность с центром в начале координат, по которой точка движется с постоянной угловой скоростью, равной одному радиану в секунду, причём движение происходит по часовой стрелке. Допустим теперь, что на нашу движущуюся точку x воздействует внешняя сила величины u, которая не может превосходить по модулю единицы. Тогда уравнение движения точки записывается в виде x″ + x = u или в виде системы уравнений

ì  x′ = y,
í
î  y′ = –x + u.
(9)

Система уравнений (9) описывает движение управляемого объекта, где u есть управляющий параметр. Постараемся теперь привести точку, находящуюся в начальный момент времени в произвольном положении (x0, y0), в состояние покоя, то есть в начало координат фазовой плоскости, за минимальное время, используя для этого управляющий параметр u. Из принципа максимума непосредственно следует, что оптимальное управление u может принимать только значения ±1. При u = +1 фазовой траекторией системы (9) является окружность с центром в точке (1, 0), а при u = –1 фазовой траекторией системы (9) является окружность с центром в точке (–1, 0). Зная, что оптимальное значение u = ±1, мы должны теперь только указать, как меняется u между этими двумя значениями в процессе движения. Из принципа максимума легко вывести, что значение u зависит лишь от положения фазовой точки на фазовой плоскости, а именно, вся фазовая плоскость разбивается на две части, в одной из которых u должно иметь значение +1, а в другой — значение –1.

Разбиение фазовой плоскости на две части осуществляется линией, начерченной на рис. 1. Она состоит из полуокружностей радиуса единица, опирающихся как на диаметры на отрезки оси абсцисс. Причём на положительной части абсциссы полуокружности обращены вниз, а на отрицательной части абсциссы полуокружности обращены вверх. Две полуокружности, примыкающие к началу координат, сами являются оптимальными траекториями, так что если начальная точка находится на одной из них, то движение в начало координат осуществляется по соответствующей полуокружности. Оказывается дальше, что если фазовая точка находится под начерченной линией раздела, то u должно иметь значение +1, а если над линией раздела, то значение u должно быть равно –1. Легко вычертить траекторию оптимального движения точки (см. рис. 1), исходя из произвольного начального положения (x0, y0). Начиная с какой-либо точки плоскости (x0, y0), движение определяется уравнением (9) с определённым значением u = ±1, причём значение это переключается на противоположное, когда соответствующая траектория доходит до линии раздела переключения. В конце концов точка попадает на одну из полуокружностей линии раздела, примыкающих к началу координат, после чего точка движется по соответствующей полуокружности к началу координат.


Рис. 1

Принцип максимума является всеобъемлющим универсальным методом для решения задач оптимизации. Он нашёл многочисленные применения в различных областях знания и оказал существенное влияние на развитие вариационного исчисления. В игровых задачах достигнуть разультатов столь общего характера нам не удалось. Ими занимается сейчас большое число математиков, среди которых следует отметить группу сотрудников Математического института им. В. А. Стеклова и школу академика Н. Н. Красовского в Свердловске. Ими достигнуты значительные результаты. Здесь я ограничусь тем, что приведу один конкретный пример задачи преследования.

В пространстве R произвольной размерности n, где n ≥ 2, рассмотрим две точки x и y, каждую из которых мы можем одновременно трактовать как вектор. Точку x будем считать преследующей точкой, а точку y — убегающей точкой. Процесс преследования считается законченным, когда x совпадает с y. Движение этих точек описывается следующими уравнениями:

x″ + αx′ = u,     y″ + βy′ = v. (10)

Здесь u и v — векторы пространства R. В нашей задаче они являются управляющими векторами. Их можно выбирать произвольными по направлению, но они ограничены по длине, а именно, для них выполнены условия |u| ≤ ρ, |v| ≤ σ. Числа α, β, ρ, σ положительны. Таким образом, уравнение (10) описывает движение точки x с линейным трением α под действием внешней силы u, которая может быть выбрана произвольной по направлению, но не превосходит по величине числа ρ. Аналогичное верно и для точки y. Процесс преследования можно рассматривать с двух точек зрения. При первой точке зрения мы отождествляем себя с преследователем. Наша задача заключается тогда в завершении преследования путём выбора надлежащего управления u. При этом в процессе преследования мы всё время наблюдаем за поведением уходящего объекта. При второй точке зрения мы отождествляем себя с убегающим объектом и наша задача состоит в том, чтобы уйти от преследования, выбирая надлежащим образом управление v. При этом мы всё время наблюдаем за преследующим нас объектом. Основной результат, имеющийся здесь, следующий.

  1. Задача преследования всегда может быть решена положительно, то есть преследование завершено, если выполнены два неравенства
ρ

α

 >  σ

β

 ,     ρ > σ.
(11)
  1. Задача убегания имеет всегда положительное решение, если выполнено неравенство σ > ρ.

Оказывается, что при решении задачи преследования в случае, когда выполнены условия (11), мы всегда имеем наилучший способ поведения преследователя, то есть имеется единственное оптимальное управление преследователя u(t), отклонение от которого неизбежно увеличивает время преследования. При этом оптимальное управление преследователя u(t) определяется постепенно с возрастанием времени t в зависимости от поведения убегающего объекта.





О математике и качестве её преподавания
Впервые опубликовано в журнале «Коммунист», 1980, № 14.

Л. ПОНТРЯГИН
Академик, Герой Социалистического Труда

Моё внимание привлекло в школьном учебнике определение вектора.

Вместо общепринятого и наглядного представления о нём как о направленном отрезке (именно такое определение, например, сохранилось и в «Политехническом словаре», М., «Советская энциклопедия», 1976, с. 71) школьников заставляют заучивать следующее: «Вектором (параллельным переносом), определяемым парой (AB) несовпадающих точек, называется преобразование пространства, при котором каждая точка M отображается на такую точку M1, что луч MM1 сонаправлен с лучом AB и расстояние |MM1| равно расстоянию |AB (В. М. Клопский, З. А. Скопец, М. И. Ягодовский. Геометрия. Учебное пособие для 9 и 10 классов средней школы. 6-е изд. М., «Просвещение», 1980, с. 42).

В этом сплетении слов разобраться нелегко, а главное — оно бесполезно, поскольку не может быть применено ни в физике, ни в механике, ни в других науках.

Что же это? Насмешка? Или неосознанная нелепость? Нет, замена в учебниках многих сравнительно простых, наглядных формулировок на громоздкие, нарочито усложнённые, оказывается, вызвана стремлением... усовершенствовать (!) преподавание математики.

Если бы приведённый мною пример был только досадным исключением, то ошибку, по-видимому, легко можно было бы устранить. Но, на мой взгляд, в подобное состояние, к сожалению, пришла вся система школьного математического образования...

Однако прежде, чем об этом говорить, целесообразно высказать предварительные замечания о самой математике. Значение её на наших глазах возрастает, своими приложениями она охватывает всё новые области познания и практики. Одновременно происходит стремительный прогресс и в ней самой. Возникнув некогда как сугубо прикладная наука и имея своим объектом пространственные формы и количественные отношения действительного мира — то есть весьма реальный материал, — в ходе своего развития математика принимала всё более абстрактную форму, которая в известной степени затушевывала её «земное» происхождение. Ведь чтобы исследовать названные формы и отношения в чистом виде, приходилось мысленно отделять их от содержания, оставляя его в стороне как нечто безразличное. На это не случайно указал Ф. Энгельс в своей гениальной работе «Анти-Дюринг».

Отвлекаясь от действительности, люди получили точки, лишённые измерений, линии, лишённые толщины и ширины, разные «a» и «b», «x» и «y», постоянные и переменные величины, а далее — дошли до продуктов «свободного творчества и воображения самого разума» — до мнимых величин. «Но совершенно неверно, будто в чистой математике разум имеет дело только с продуктами своего собственного творчества и воображения», — писал Энгельс (К. Маркс и Ф. Энгельс. Соч., т. 20, с. 37). И выведение математических понятий друг из друга, кажущееся не опирающимся на определённые данные и факты, доказывает не их априорное возникновение, а лишь их рациональную связь. Нельзя не согласиться с мыслью: «Как и все другие науки, математика возникла из практических потребностей людей... Но, как и во всех других областях мышления, законы, абстрагированные из реального мира, на известной ступени развития отрываются от реального мира, противопоставляются ему как нечто самостоятельное, как явившиеся извне законы, с которыми мир должен сообразоваться... Чистая математика применяется впоследствии к миру, хотя она заимствована из этого самого мира и только выражает часть присущих ему форм связей, — и как раз только поэтому и может вообще применяться» (там же, с. 37–38).

«Воспаряя» над жизнью, над действительностью, математика в силу необходимости своего же развития непременно то и дело возвращается к своим истокам, к практике, находя в ней тот оселок, на котором она удостоверяется в действительной ценности своих теоретико-математических построений и пересматривает или утверждает свои основания, совершенствует свои подходы и методы.

Поэтому несерьёзными выглядят философствования типа, например, следующего: «Общепринято (?! — Л. П.) математику подразделять на следующие отрасли: чистую математику (или собственно математику), прикладную математику и метаматематику. В свою очередь, чистая математика подразделяется на формальную и содержательную математики». (Цитируется брошюра о «философских проблемах математики», выпущенная издательством «Знание». Не называю имени автора только потому, что брошюра вышла семь лет назад.) В математике нет «надматематических» (ведь «мета» по-гречески означает «вне», «за пределами») разделов (отраслей), равно как совершенно нелепо подразделять её на «формальную» и «содержательную». Я отнюдь не умаляю значения специализации исследовательской деятельности на теоретическую и прикладную. Однако, познакомившись ближе, нетрудно убедиться, сколь тесно взаимодействие и взаимопереплетение фундаментальных изысканий и сферы их приложений. Высокий уровень абстракций современной математики способен гипнотизировать тех, кто не является в ней специалистом, и, очевидно, порождать в их среде досужие мнения, неверные представления, особое почтение лишь к кабалистическим формулировкам типа приведённой мною из школьного учебника и недоверие к ясности и простоте действительно научных утверждений. Именно подобное отношение, порождённое дилетантизмом в специальной области и одновременно узостью общего кругозора, способно послужить неблагоприятной почвой для принятия решений в практических делах.

Действительно, существует область математики, именуемая математической логикой, которая занимается изучением формальных математических высказываний, способов их построения, правилами вывода и тому подобными, точно определёнными в строгом математическом смысле действиями. Из сказанного, однако, не следует, будто есть целый раздел математики, как изображает процитированный автор, названный им «формальной математикой», в котором специалисты заняты-де производством практически ненужных «высказываний». Его деление «чистой математики» на «формальную и содержательную» не имеет никакого смысла и непонятно математикам. Если же учесть, что он «перемешивает» и без того трудные математические понятия с туманными философскими формулировками, прибегает к неоправданным обобщениям, то просто диву даёшься, какое пустословие можно выдавать за науку на страницах массового издания.

Не тем же ли обусловлены и рассуждения о некоем «предмете философии математики», суть-де которого составляют «свойства и отношения математики, о присущности или неприсущности которых мы (т.е. он, автор. Л. П.) можем судить, опираясь на категории и положения философии»? Философские категории и положения у написавшего приведённые строки «выступают в роли базиса (основания), необходимого для решения философских проблем математики».

Боюсь, что при таком подходе автор удаляется не только от самой математики, но и от той научной философии, которая служит фундаментом господствующего в нашем обществе мировоззрения, методологии нашего познания. Действительно, рассуждения о «формальной математике» (само это выражение не может не покоробить учёного-математика) как о «совокупности формальных теорий, главными интерпретациями которых являются системы математических объектов», представляются мне не иначе как словесным сором, а умозрения, что, мол, «понятие формулы (предложения) языка является чисто синтаксическим (формальным), не опирающимся на содержание (семантику) и независимым от него», — принципиально ложными. Определение же: «Под формальной теорией понимается правильное подмножество... формул формального языка» — бессмыслицей.

Всё это могло бы быть только забавным, если бы не дезориентировало умы, не вносило (ввиду распространения массовым тиражом) искажённых представлений в сознание широкой читающей общественности, особенно молодёжи, формирующийся ум которой особенно впечатлителен и восприимчив.

Зрелый специалист, обладающий должной профессиональной культурой, наделён иммунитетом против подобных приведённым выше «идей» — он лишь иронически пожмёт плечами. Ну кто, спрашивается, из математиков станет представлять элементарную арифметику «подмножеством... формул формального языка», как это делает данный автор? Специфической особенностью «формальных теорий», согласно ему, является то, что их «предложения» распознаются неким «эффективным методом» лишь «на основе их формы вне зависимости от содержания». «Самое же главное, — пишет он, — заключается в том, что формальные теории строятся и развиваются независимо от семантики, или интерпретаций (если не считать эвристического значения интерпретаций)».

Как это понимать?.. Да, форма может иметь специфические особенности своего развития, но отнюдь не независимо от логики развития содержания.

Это уже философские азы, указывать на которые просто неловко.

Абстрактность математики — производное, следствие её специфической природы, а не наоборот; абстракция есть логический акт, производный от содержательной деятельности; «форма как таковая» есть определённая содержательная предметная деятельность, состоящая в воспроизведении стороны предметов, явлений, процессов объективного мира; рассмотрение её «самой по себе», вне этой предметной деятельности приводит в конце концов к отождествлению предмета науки с её «языком», то есть к соскальзыванию в идеализм, в метафизику. Отождествление предмета теории с её формальным аппаратом приводит к тому, что математика — в представлениях горе-философов — вырождается в лингвистику (подобно тому как аналогичная тенденция приводит теоретическую лингвистику, наоборот, к отождествлению с математикой).

Не стану более задерживаться на этом вопросе, равно как и на критике несовершенств и искажений в случайно попавшей мне в руки брошюре. Можно было бы привести и другие примеры — они стали возникать в большом количестве, как головастики в весенних водах, и в общем не заслуживали бы внимания. Но любой землепашец знает, сколь опасна сорная трава на культурной ниве. Если своевременно не принимать мер, она может агрессивно распространиться, забивая собою злаки. И вот что хотелось бы подчеркнуть: ложные идеи способны исказить поле сознания, стихийная цепная реакция их — породить ложные тенденции в нашей жизни. А это уже не может не тревожить.

Я думаю, любого специалиста не могут не заботить дальнейшие судьбы той области, в которой протекает его деятельность, её кадрового обеспечения. Люди, некомпетентные в математике, но имеющие отношение к организации научных исследований и подготовке специалистов, вообще к системе просвещения и образования, питаясь «чтивом», подобным приведённому выше, могут невольно оказаться дезориентированными и совершать ошибочные действия, чреватые далеко идущими последствиями.

Вопрос о том, например, чем следует заниматься, стоит для самих математиков, быть может, острее, чем для представителей других областей знания. Возникшая в свое время в ответ на практические нужды, математика имела, имеет и будет иметь своей основной задачей изучение окружающего нас материального мира с целью его дальнейшего освоения человеком. В то же время у неё, разумеется, есть и своя внутренняя логика развития, в силу которой учёные создают весьма отвлечённые теоретические построения, не связанные непосредственно с окружающей нас действительностью и не сразу находящие для себя в ней приложения.

Мне знакомо восхищение замечательной стройностью и своеобразной красотой подобного рода построений. Однако оно не может служить единственным оправданием их существования. Математика не музыка, красота которой доставляет радость и широкой аудитории немузыкантов. Эстетическое наслаждение, порождаемое лишь математической красотой, способен испытать только узкий круг специалистов, и создавать ценности исключительно в этом смысле — значит заведомо искажать высокое предназначение математики, замкнув её только на себя и тем самым фактически заставив работать на холостом ходу.

Я не собираюсь утверждать, что обладающие внутренней стройностью, но лишённые непосредственного практического значения разделы математики не имеют права на существование; они включены в самую ткань науки, иссечение которой могло бы привести к нарушению всего её организма. Кроме того, оказывается, что некоторые отделы математики, лишённые практических приложений в течение многих веков, позже находят такие приложения. Классическим примером служат кривые второго порядка, созданные в древности из внутренних потребностей «чистой» науки и нашедшие лишь позже очень важное применение. С другой же стороны, некоторые разделы математики, посвящённые лишь её внутренним проблемам, оставаясь «вещью в себе», постепенно вырождаются и почти наверняка в конце концов оказываются ни для чего не нужными. Думаю, что для впавших в грех таких математических упражнений никакие «философские» обоснования «формальной теории» не послужат ни оправданием, ни утешением. Сказанное, по-видимому, имеет и прямое отношение к «философии для философии» (быть может, кто-нибудь пустит выражение: «формальная философия»? Именно так, наверное, следовало бы окрестить вышеприведённые мудрствования, претендующие на «философские основания математики»). Однако дело философии не в том, чтобы созерцательно объяснять мир, и не в том, чтобы умозрительно изобретать «философские принципы» или «основания» (например, математики), а в том, чтобы исследовать предметную деятельность, служа одновременно методологической основой её преобразования и руководством к практическому действию (в частности, к выбору тематики исследования).

Итак, принимая во внимание высокую степень развития сегодняшнего математического аппарата, а также тот факт, что прогресс математической науки стимулируется не только внешними по отношению к ней побудительными причинами, но и внутренними факторами, вопрос о выборе тематики исследований становится для математиков весьма тревожным. Я считаю, что если не все, то во всяком случае многие из них должны в своей работе обращаться к первоисточникам, то есть к приложениям математики. Это необходимо для того, чтобы влить новую свежую струю в научные исследования, чтобы более активно применять весьма эффективные математические методы на практике.

Поскольку всё живое в нашей жизни имеет диалектический характер, хотел бы, подчеркивая значимость прикладных исследований, предостеречь от обращения их в свою противоположность под внешне как будто «верной» оболочкой. Я имею в виду математическую мистификацию практических задач, от которой не бывает пользы ни уму, ни сердцу. В последнее время можно встретить, например, так называемые экономико-математические работы, насыщенные сложной математической символикой, но не содержащие ни одного конкретного, численного примера, — непонятные, недоступные и фактически ненужные экономистам, а с точки зрения математиков — представляющие ничтожную ценность, либо вообще не обладающие ею.

В последнее время опасными становятся математические спекуляции в теоретической физике и в технических науках. Дело доходит до того, что серьёзная работа в области техники может быть ошельмована на том основании, что в ней нет математических обоснований, хотя всем может быть ясна практическая пригодность исследования. Для математики обидно, что иногда её привлекают для бутафории, для того, чтобы спрятать бедность и немощность той или иной специальной работы (например, в биологии и медицине). Обидно прежде всего за то, что действительное, правильное применение математики в специальных исследованиях может дать весьма ощутимый эффект.

Нужно признать, и я об этом заявлял (см. «Успехи математических наук», том 33, вып. 6 (204), 1978, с. 21), что некоторые дела в области математики сильно запущены из-за нашей собственной беспечности и непонимания происходящего.

К числу таких запущенных дел принадлежит положение с математическим образованием в средней школе. Реформа преподавания, проведённая более 10 лет назад, привела его, на мой взгляд, к странному состоянию. Об этом мне уже довелось выступать на страницах газеты «Социалистическая индустрия» (21 марта 1979 года — статья «Этика и арифметика»), вместе с моими коллегами в журнале «Математика в школе» (1979, № 3).

Пищу для печальных раздумий даёт письмо тринадцати старшеклассниц из Вильнюса, опубликованное в «Комсомольской правде» 12 марта 1978 года — «Бесталанные ученики?», неубедительно, по-моему, прокомментированное. В нём было выражено настоящее отчаяние: «Нам никак не одолеть программу по математике... Многого не понимаем, зубрежкой не всё возьмёшь... Такие заумные учебники... Вот и ходим мы в «дебилах», как называют нас учителя...»

Однако всеобщая тревога возникла гораздо раньше. О преподавании математики заговорили повсюду, начиная с семей, в которых есть дети-школьники, и кончая высокими инстанциями. Родители обеспокоились, что, имея даже инженерное образование, они не понимают излагаемого в школе материала и не могут помочь своим детям в приготовлении уроков. Не ясен и смысл этого материала. Среди школьных педагогов — растерянность и недоумение по поводу новых программ. От многих из них мне приходится получать письма, в которых это выражено весьма эмоционально.

О причинах данного явления я узнал из телевизионного выступления министра просвещения СССР М. А. Прокофьева (в 1979 году). Он сообщил, что двенадцать лет тому назад некоторыми авторитетами было признано, что математика, преподававшаяся тогда в средней школе, отстала от требований времени и потому её нужно «модернизировать». Нет слов, в определённых усовершенствованиях школьная математика нуждалась, но осуществлённые мероприятия не улучшили, а ухудшили положение. В результате, в частности, возникли те учебные программы и пособия, по которым ныне и учатся математике в школе.

На одном совещании мне довелось услышать из уст академика-физика: «Совершенно понятно, почему родители даже с инженерным образованием не понимают школьной математики, — ведь это современная математика, а они учили только старую...» Вот, оказывается, в чём «секрет». Тут уж у меня самого возник вопрос: зачем же детям такая математика в средней школе, что в ней не могут разобраться даже специалисты с высшим техническим образованием?

В современных условиях закономерно возросли требования к содержанию программ по математике и их конкретной реализации в учебниках. Осуществлённый в последние годы пересмотр содержания школьного курса математики, включение в него элементов математического анализа, теории вероятностей и так далее можно в принципе рассматривать как явление прогрессивное. Однако в основу изложения авторы ныне действующих учебников положили теоретико-множественный подход, отличающийся повышенной степенью абстракции и предполагающий определённую математическую культуру, которой школьники не обладают и не могут обладать. Её нет и у большинства преподавателей. Что же в итоге произошло? Искусственное усложнение учебного материала и непомерная перегрузка учащихся, внедрение формализма в содержание обучения и отрыв его от жизни, от практики. Многие важнейшие понятия школьного курса математики (такие, как понятие функции, уравнения, вектора и т.д.) стали труднодоступными для сознательного усвоения их учащимися.

На определённом этапе развития математики высокоабстрактная теоретико-множественная концепция ввиду её новизны стала модной, а увлечение ею — превалировать над конкретными исследованиями. Но теоретико-множественный подход — лишь удобный для математиков-профессионалов язык научных исследований. Действительная же тенденция развития математики заключается в её движении к конкретным задачам, к практике. Современные школьные учебники по математике поэтому — шаг назад в трактовке этой науки, они несостоятельны по своему существу, поскольку выхолащивают суть математического метода.

Нет ничего предосудительного в том, чтобы в средней школе употреблялось «множество» как слово русского языка. Так, определение окружности можно дать в двух вариантах. Первый: «Окружность состоит из всех точек плоскости, отстоящих от заданной точки на одном и том же расстоянии». Второй: «Окружность есть множество всех точек, находящихся на заданном расстоянии от заданной точки». Второй вариант определения окружности ничем не хуже и не лучше первого. И слово «множество» совершенно безвредно, а, в общем, бесполезно. Но в модернизированных учебниках и программах оно возведено в ранг научного термина, и это повлекло за собой уже серьёзные последствия. Сразу же появились и такие понятия, как «пересечение множеств», «объединение множеств», «включение множеств». И вводятся соответствующие значки. Кажущиеся нам, математикам-профессионалам, очень понятными, эти выражения и значки не так уж легко воспринимаются учениками, а главное — они не нужны для понимания школьных истин математики.

Стремление к большей общности, свойственное новым программам, и повсеместное употребление «множества» как научного термина выражается, например, в том, что геометрическая фигура определяется как «множество точек». А так как в теории множеств два множества могут быть равными, лишь полностью совпадая, то слово «равенство» уже не применимо к двум различным треугольникам. Это слово заменяется другим, не свойственным русскому языку, термином «конгруэнтность». Этот термин не употребляется в практике. Никакой строитель не будет говорить о двух «конгруэнтных балках» (или закройщик из ателье о «конгруэнтных кусках ткани»), а будет говорить о равных, или одинаковых балках (кусках ткани).

Выше мы привели неудобоваримое определение вектора. Очень характерный пример того, как относительно простое, интуитивно ясное понятие преподносится педагогически абсурдным способом. А получилось оно у авторов таким ввиду того, что прежнее определение не укладывается в теоретико-множественную концепцию. Ведь вектор не есть «множество». И равенство векторов не есть теоретико-множественное равенство. Потому в современном школьном курсе геометрии вектор и предстал как «параллельный сдвиг пространства», а сложение двух векторов — как «последовательное применение двух параллельных сдвигов». Определения эти не только чрезвычайно сложны — они совершенно не соответствуют общепринятому аппарату физики, механики, всех технических наук.

Так же обстоит дело и с определением функции. Вместо того, чтобы сказать, что функция есть величина «игрек», числовое значение которой можно найти, зная числовое значение независимой переменной «икс», — что в общем виде записывается: y = f (x), — и дать ряд примеров её при помощи формул, функцию определяют, по существу, как отображение одного множества на другое. Делается это, однако, в школьных учебниках куда сложнее: сперва вводится понятие отношения между элементами двух различных множеств, а потом говорится, что при выполнении некоторых условий, наложенных на это отношение, последнее является функцией.

Новые учебники переполнены такого рода громоздкими, сложными, а главное, ненужными определениями. Математическое понятие уравнения стремятся свести к грамматическому понятию предложения. На бедные детские головы обрушивается понятие уравнения как «предложения с переменной» (Ю. Н. Макарычев, Н. Г. Миндюк, К. С. Муравин. Алгебра. Учебник для 6-го класса средней школы. М., «Просвещение», 1977, с. 12). Наткнувшись на него, я никак не мог понять, что же это значит. Примеры уже даются в учебнике для четвёртого класса. Так, приводится «предложение»: «Река x впадает в Каспийское море». Далее разъясняют, что если вместо x подставить «Волга», то мы получим правильное утверждение, и, следовательно, «Волга» есть решение этого уравнения. Если же вместо x подставить «Днепр», то получится неверное утверждение, и потому «Днепр» не является решением этого уравнения (см. Н. Я. Виленкин, К. И. Нешков, С. И. Шварцбурд, А. С. Чесноков, А. Д. Семушин. Математика. Учебник для 4-го класса средней школы. М., «Просвещение», 1979, с. 39).

Какое это имеет отношение к математике? У неё своя специфика, и нет надобности сводить её к грамматическим понятиям. Однако этот факт в высшей степени симптоматичен, если вернуться к тому, что говорилось выше о «философии математики», готовой свести предмет математической теории к манипулированию её «языком» — к «лингвистике».

Чрезмерно абстрактный характер придан преподаванию математики уже в первых классах и уже там мешает освоению её основного предмета — арифметики. Внедрение нарочито усложнённой программы, вредной по своей сути, осуществляется к тому же с помощью недоброкачественных, в ряде случаев просто безграмотно выполненных учебников. Но главный порок, конечно же, в самом ложном принципе — от более совершенного его исполнения школа не выиграет.

А ведь, признаться, неплохим, в общем, был предшествующий опыт школьного обучения, неплохими были и учебники, — не случайно именно к ним обращаются репетиторы, подготавливая сегодня абитуриентов в вузы. Кстати говоря, не отказ ли от того положительного, что было раньше в школьном преподавании, способствовал развитию «чёрного рынка» репетиторства с его спекулятивными ценами — явления возмутительного, несовместимого с нравственными принципами нашего общества.

Такого рода «стихийные бедствия» совершенно не согласуются и с принципами социального управления, которым неукоснительно должна следовать и наша школьная система.

Что же касается более благополучных вариантов учебников, то есть такие — например, по геометрии, написанный академиком А. В. Погореловым (А. В. Погорелов. Геометрия. Пособие для учителей. М., «Просвещение», 1979). Однако создаётся впечатление, что Министерство просвещения СССР не спешит умножить число подобных примеров.

Иногда официальные лица министерства, защищая теоретико-множественный подход как «современный» в школьной педагогике, ссылаются на пример западноевропейских стран: мол, там этот подход вошёл в жизнь, а мы-де отстаём от передового опыта. А между тем Парижская Академия наук, например, ещё в 1972 году обнаружила, что подобная модернизация преподавания математики приводит к появлению неудовлетворительных и ошибочных учебников и методов преподавания, что обучение математике во французских школах не приносит общему образованию той пользы, которой от него следовало бы ожидать.

Четыре года назад крупнейший французский математик Жан Лере, выступая в Рабате на первом панафриканском Математическом конгрессе, критически оценил постановку школьного дела в развитых капиталистических странах, отметив, что преподаватели и учебники там всё с большим трудом передают детям те знания, которые им необходимы для жизни. Вот что сказал он о математике, преподаваемой в школах Франции: «Развитие понятия множества в последнее время значительно расширило область применения и силу математических методов, но значит ли это, что преподавание математики юношам и девушкам должно быть основано на этом понятии, то есть проходить по схеме, принятой в прекрасном трактате Н. Бурбаки? Ответ может быть только отрицательным... Можно ли строить курс математики для юношества логически на теории множеств, то есть выразить сущность этой теории на простом и доступном языке? Во Франции это пытались сделать с самонадеянностью, основанной на непонимании, что не могло не привести к катастрофе... Торжество методики, основанной на повторении многословных определений, имеет самые серьёзные социальные последствия. С одной стороны, это отваживает от научного образования способных юношей, которые лишены привилегии иметь взрослого руководителя, способного объяснить им, что они правы, не понимая того, что им преподают, с другой стороны, это привлекает к занятиям как раз наименее способных и думающих учеников, которые учат наизусть и повторяют, не понимая смысла... Извращённая ситуация, в которой оказалось преподавание математических дисциплин во Франции, в большей степени, чем в англо-саксонских странах, возникла из вполне законного стремления к прогрессу. Наши самые искренние и цельные реформаторы не сумели отстранить от этого дела шарлатанов, которые использовали их инициативу, например, тех, кто с лёгкостью написал толстые учебники, полные ошибок, и получил преимущественное право на их переиздание, то есть воспроизведение ошибок. Сами учителя были подготовлены интенсивной пропагандой... Методисты боятся потерять авторитет, если исправят допущенные ошибки. Я прочёл двум, сменившим один другого, министрам национального образования Франции основное содержание министерских инструкций, имеющих целью ошеломить наших детей научными определениями прямой... Они признали, что не понимают сами того, что предлагают в качестве обязательных инструкций, однако инструкций не отменили».

Приведённые слова невольно порождают желание провести параллельное сравнение с тем, что происходит с математикой в нашей школе. «Современные» учебники по математике, утверждённые Министерством просвещения СССР и миллионными тиражами выпускаемые издательством «Просвещение», напоминают по своему подходу учебники французских авторов, критикуемые Жаном Лере.

В последние годы некоторую часть школьного курса заполнили элементы высшей математики. Поскольку она должна быть рассчитана на всех учеников, а не только на тех, кто собирается впоследствии стать профессиональным математиком, изложение её должно быть достаточно ясным и простым, без лишнего формализма. На деле же оно усложнено, перегружено ненужными фактами и недоступно пониманию школьников. Что же касается элементарной математики, то основные её разделы весьма сокращены, излагаются неполно и не подкреплены достаточным числом примеров и задач. Вот и получилось, что, с одной стороны, школьники оглушены формальным, трудно воспринимаемым материалом, по большей своей части ненужным, а с другой — не получают необходимых навыков в выполнении элементарных арифметических действий и алгебраических преобразований, в решении простейших уравнений и неравенств (в том числе квадратных), обнаруживают слабые знания тригонометрии, не умеют применять алгебру и тригонометрию для решения геометрических задач. В сознании их возникает ложное представление о математике как о чём-то заумном, далёком от реальной действительности и невозможном для освоения многими. Но, по-видимому, ответственных работников системы просвещения не смущает насыщение школьных страниц множеством «формул формального языка».

С большой досадой приходится констатировать, что вместо того, чтобы прививать учащимся практические умения и навыки в использовании обретаемых знаний, учителя подавляющую часть учебного времени тратят на разъяснение смысла вводимых отвлечённых понятий, трудных для восприятия в силу своей абстрактной постановки, никак не «стыкующихся» с собственным опытом детей и подростков, не способствующих развитию их математического мышления и, главное, ни для кого не нужных. Вот уж где уместно наконец сказать о делении математики на «формальную» и «содержательную», только несколько в ином — увы, более точном — смысле, нежели писал процитированный выше философ. Содержательная часть математики на школьных уроках действительно потеснена сугубо формальной. Академики В. С. Владимиров, А. Н. Тихонов и я в журнале «Математика в школе» (1979, № 3) писали: «Чрезмерный объём и неоправданная сложность изложения программного материала развивают у многих учащихся неверие в свои способности, чувство неполноценности по отношению к математике. Этим отчасти объясняется снижение интереса к естественнонаучным и техническим дисциплинам... Создавшееся положение с преподаванием математики в средней школе требует принятия решительных мер по его исправлению».

В следующем номере того же журнала была опубликована статья академиков Л. В. Канторовича и С. Л. Соболева «Математика в современной школе». В ней авторы, стремясь защитить неудачные новшества, фактически (хотя и с оговорками) вынуждены были признать справедливость аргументов критики, но постарались представить её как «призыв к возврату ставших уже архаичными программ и учебников». Последний вывод смещал плоскость полемики, искажал существо её.

Не могу не процитировать и примечательный в некотором отношении абзац: «Следует сказать, что такие крайние выводы, первоначально высказывавшиеся на бюро Отделения математики, при более подробном ознакомлении с вопросом не были поддержаны на общем собрании Отделения» (подчёркнуто мною. Л. П.).

Мне кажется, что этой фразой мои уважаемые коллеги пытались ввести в заблуждение общественность. Ведь общее собрание Отделения математики АН СССР в декабре 1978 года приняло в высшей степени принципиальное решение, поддержав мнение Бюро Отделения. Вот выписка из него: «1. Признать существующее положение со школьными программами и учебниками по математике неудовлетворительным. 2. Считать вновь представленную Министерством просвещения СССР программу по математике для средней школы неудовлетворительной. 3. Создать Комиссию по вопросам математического образования в средней школе при Отделении математики АН СССР...»

В связи с развернувшейся на страницах упомянутого журнала дискуссией академик-секретарь Отделения математики АН СССР Н. Н. Боголюбов попросил журнал опубликовать полный текст решения общего собрания Отделения по этому вопросу (копия письма была послана министру просвещения СССР). Главный редактор журнала Р. С. Черкасов счёл целесообразным ответить отказом...

В постановлении ЦК КПСС и Совета Министров СССР «О дальнейшем совершенствовании обучения, воспитания учащихся общеобразовательных школ и подготовки их к труду» говорилось: «Школьные программы и учебники в ряде случаев перегружены излишней информацией и второстепенными материалами, что мешает выработке у учащихся навыков самостоятельной творческой работы». Эти слова целиком и полностью относятся к ныне действующему школьному курсу математики.

Пассивную роль в создании ныне действующих учебников сыграла Академия педагогических наук СССР, не обратив должного внимания на их качество.

Странно, что многие специалисты по методике преподавания математики, имеющие обширные научные знания, оказались бессильными понять непригодность для школы существующих программ. А между тем положительная инициатива школьных учителей по совершенствованию преподавания на местах нередко глушится циркулярами или — в лучшем случае — не поддерживается должным образом.

Принципиальное отношение к критике означает не столько словесное признание её, сколько конкретные действия по исправлению сложившегося положения. Цитаты из партийных документов — не мёртвая буква и не модная фраза. В нашей стране стало законом жизни неукоснительное исполнение партийных и государственных решений. В этом выражается единство слова и дела, теории и практики. Разрыв одного с другим — не что иное, как нарушение самого принципа нашего бытия. Так понимают все советские люди неисполнение директив своего руководства. А это предполагает конкретность принимаемых мер.

Что касается совершенствования школьного курса математики, то он должен, во-первых, обобщать наглядные представления и практический опыт учащихся и готовить их к применению математических знаний в последующей деятельности. Во-вторых, изучение математики должно способствовать выработке у школьников твёрдых навыков устного счёта, развитию логического мышления и пространственного воображения. В-третьих, учащиеся должны овладеть теми математическими понятиями, с которыми им придётся встречаться в практической деятельности, а вводимые термины и символы должны быть согласованы с общепринятыми в научно-технической литературе и используемыми в смежных дисциплинах. Эти требования не представляют собой чего-то из ряда вон выходящего, напротив, они просты. Кстати заметим, что чем ближе мы к истине, тем проще оказываются выводы, в то время как наукообразные мудрствования лишь отдаляют нас от неё.

В Советском Союзе имеется блестящая плеяда первоклассных математиков, опытная армия высококвалифицированных педагогических кадров — совместными усилиями с органами народного образования они способны успешно решить задачу большой социальной значимости: повысить качество математической подготовки школьников и тем самым способствовать дальнейшим успехам высшего образования и науки страны развитого социализма.





К вопросу о переброске рек

Генеральному Секретарю ЦК КПСС
товарищу М. С. ГОРБАЧЁВУ

К вопросу о переброске части стока северных рек на юг

Глубокоуважаемый Михаил Сергеевич!

Позволяю себе обратиться к Вам лично по вопросу, который вот уже несколько лет волнует советскую общественность.

Прогнозирование новых явлений, а тем более сложных природных процессов представляет очень большие трудности.

Прогнозы технических процессов можно проверить экспериментами. Но эксперименты над природными процессами невозможны.

Трудность прогнозирования природных процессов подчёркивается тем, что даже суточный прогноз погоды, как мы все это знаем, не вполне надёжен.

В последние годы прогнозированием гидрологических процессов занимаются Институт Водных проблем АН СССР, а также Институт по переброске рек Минводхоза СССР. Их прогнозы оказались в ряде случаев ошибочными, и проведённые на основании этих прогнозов грандиозные строительства оказались вредными.

Прогнозирование, производимое в сказанных институтах, использует математику, что и даёт мне право, как математику, высказаться по поводу этой деятельности.

Остановимся на следующем.

1. Уровень Каспийского моря, как известно, колеблется — то повышаясь, то понижаясь. Прогноз, данный институтом по переброске в 1975 году, предсказывал понижение уровня моря до –29,3 м к 1985 г. Между тем, к настоящему моменту уровень Каспийского моря повысился и достиг отметки –27,85 м, т.е. отклонение от прогноза составляет около 1,5 м, что в переводе на кубические километры воды даёт около 500 куб. км за 8 лет.

Для того, чтобы защитить Каспийское море от предсказанного понижения уровня, от Каспийского моря дамбой был отделён залив Кара-Богаз-Гол. Причём прогноз не предполагал, что этот залив пересохнет за столь короткое время, как это в действительности произошло. В результате пересыхания залива Кара-Богаз-Гол возникли соляные бури, наносящие существенный вред сельскому хозяйству Нижнего Поволжья, и, кроме того, промышленность лишилась ценнейшего сырья.

Математическая модель поведения уровня Каспийского моря, данная Институтом Водных проблем и Институтом по переброске, не предусматривает тех колебаний уровня моря вверх и вниз, которые происходят в действительности. Уже это указывает на неправильность математической модели, положенной в основу прогноза.

Уровень Каспийского моря является одной из «главных забот» обоих институтов. Для сохранения его институты предлагают переброску северных рек в Волгу в количестве 5,8 куб. км в год на первом этапе, 19,1 — на втором, а впоследствии ещё больше. Эти объёмы воды никак не могут пойти в сравнение с теми изменениями объёма, которые производит природа (около 500 куб. км за 8 лет). Между тем переброска северных рек в Волгу может полностью разорить север России, а кроме того имеется ещё ряд заведомо известных резко отрицательных побочных последствий, происходящих из-за затопления и подтопления больших территорий, возникающих при переброске.

Из сказанного видно, что прогнозы этих институтов, касающиеся уровня Каспия, грубо ошибочны.

Ошибочность этих прогнозов происходит из-за того, в первую очередь, что учесть в математической модели все реальные существенные факторы очень трудно. В частности, до сих пор нет никакого удовлетворительного объяснения колебаниям уровня Каспийского моря.

Трудно себе представить, что гидрологическое прогнозирование может обойтись без учёта изменения погоды, а между тем многолетнего прогноза погоды не существует.

2. На Дунай-Днестровской оросительной системе предполагалось использовать черноморский лиман Сасык в качестве пресноводного водохранилища. Для этого лиман был отделён от моря дамбой и в него направлялась пресная вода из Дуная, а солёная вода удалялась в Чёрное море. С того момента, когда лиман Сасык, согласно прогнозу, должен был опресниться, началось использование его воды для полива сельскохозяйственных угодий. Между тем, к этому запрогнозированному времени Сасык ещё оставался солёным, что можно было непосредственно установить. Поразительно, что руководящие организации исходили не из фактического положения вещей, а из прогноза, который не подтвердился. В результате этого подверглись засолению большие сельскохозяйственные площади!

3. В Институте по переброске рек рассматривается проект отделения дамбой от Белого моря Онежской губы с целью создания из неё пресноводного водохранилища. Этот проект аналогичен тому, который был осуществлён с лиманом Сасык. Можно опасаться, что и на Белом море в случае осуществления этого проекта произойдёт то же самое, что уже произошло на Чёрном море.

Само название Института по переброске рек «Головной проектно-изыскательский и научно-исследовательский институт по переброске и распределению вод северных и сибирских рек» (!) психологически обязывает его руководство и сотрудников доказывать целесообразность переброски и разрабатывать соответствующие проекты, так как эти проекты являются результатом его работы. Между тем, утверждение о нецелесообразности переброски, к которому мог бы прийти институт, хотя и было бы важным результатом, психологически руководством института не могло бы рассматриваться как некое достижение. Поэтому было бы важно освободить институт от его названия.

Мне кажется, что ввиду несостоятельности теоретического обоснования переброски северных рек на юг, а также ввиду изменения природной ситуации с Каспийским морем, переброска северных рек на юг является нецелесообразным, очень опасным и слишком дорогим мероприятием.

Герой Социалистического труда, лауреат Ленинской и Государственных премий СССР, академикЛ. С. Понтрягин



В ПРЕЗИДИУМ XXVII СЪЕЗДА КПСС

Научная общественность Академии наук СССР активно обсуждала проект Основных направлений. Предложения исключить задания по переброске рек из Основных направлений были внесены многими научными подразделениями АН СССР, в частности Отделением экономики, Отделением математики, Отделением истории, Научным советом при Президиуме АН СССР по проблемам биосферы и другими. Однако эти предложения не нашли отражения в документе «Предложения Академии наук СССР к проекту Основных направлений», который Президиум АН СССР направил в Совет Министров СССР 20 января 1986 г.

Большинство крупных учёных, академиков считают, что результаты проведённых исследований по переброске приводят к однозначному выводу: переброска речного стока — это глубоко ошибочное мероприятие. Реализация проекта переброски части стока северных рек в бассейн Волги привела бы к крайне опасным экологическим последствиям, нанесла бы невосполнимый ущерб экономике и культуре страны.

Предлагаем прекратить финансирование научных исследований по обоснованию проектов переброски рек и исключить задания по переброске из Основных направлений.


Лауреат Государственных премий, академик
Д. С. Лихачёв

Герой Социалистического труда, лауреат Государственных премий, академик
Г. И. Петров

Герой Социалистического труда, лауреат Ленинской и Государственных премий, академик
Л. С. Понтрягин

Лауреат Ленинской и Государственной Премий, член-корреспондент АН СССР
В. Л. Янин



Hosted by uCoz