Стефан Банах родился 30 марта 1892 года в Кракове. Его отец носил фамилию Гречек, был чиновником в краковском управлении железной дороги и происходил из горской семьи села Йорданова. Никто точно не знает истории детских лет Банаха, но известно, что сразу после рождения он был отдан на воспитание прачке по фамилии Банахова, проживавшей в мансарде на улице Гродзкой (дом № 70 или 71). С этого времени он уже никогда больше не встречался со своей матерью, так что, собственно говоря, совсем её не знал. Отец тоже о нём не заботился, так что с 15 лет Банах перестал получать систематическое образование, но с большой охотой брал частные уроки математики. [Комментарий В.Д.Мильмана по поводу таких пробелов в биографии. И вопрос после сравнения текстов: так «брал частные уроки» или «подрабатывал частными уроками»?
Мечтой Банаха была должность ассистента математики во Львовском политехническом институте, и она осуществилась в 1920 году, когда Антоний Ломницкий предоставил Банаху желанную должность. Банах уже тогда был автором работы о сходимости в среднем частичных сумм рядов Фурье. Эту задачу поставил ему я ещё в 1916 году, когда познакомился с ним на краковских бульварах. До этого я долгое время пытался решить её сам, так что велико было моё удивление, когда Банах получил отрицательный ответ, который сообщил мне через несколько дней с некоторой оговоркой (она заключалась в незнании примера Дюбуа-Реймонда). Нашу совместную заметку С. Заремба представил Краковской Академии с большой задержкой, так что вышла она датированной 1918 годом.
С момента прибытия во Львов положение Банаха радикально изменилось. Он стал материально обеспеченным, женился и поселился в университетском здании на улице Св. Николая. В 1922 году в III томе Fundamenta Mathematicae появилась его докторская диссертация: «Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales»,
Это была седьмая работа Банаха, а первая была посвящена теории линейных операций. В том же году состоялась его защита. В отношении Банаха не были соблюдены университетские традиции ему присудили докторскую степень (хотя он не имел законченного образования) и сразу после защиты дали должность профессора в возрасте 30 лет. Не было недостатка в признании и с других сторон. В 1924 году Банах стал членом-корреспондентом Польской Академии наук, в 1930 году получил премию г. Львова, а в 1939 году он стал лауреатом большой премии Академии. Сегодня 320 трудно понять, почему в той же Академии не нашлось кресла для мальчишки с краковской улицы, но львовские математики сразу поняли, что Банах прославит польскую математику. До его прихода львовской школы не существовало в буквальном смысле этого слова, поскольку Серпиньский вскоре после Первой мировой войны вернулся в Варшаву, откуда его прогнала война, а вскоре после этого умер Зигмунд Янишевский. В межвоенное двадцатилетие львовская школа завоевала признание в первую очередь за счёт теории операторов, ибо на этом поле выросли её главные достижения. Банах занялся линейными функционалами, такими как интеграл. Он показал, что понятие интеграла можно расширить так, чтобы оно охватило все функции, сохраняя свойства, постулированные Лебегом; на самом деле это понятие неэффективно, но доказательство его существования и вывод (Fund. Math., 1923) свидетельствуют о силе Банаха. Основной его работой является книга о линейных операторах. Изданная в 1932 году в виде первого тома Monografie Matematyczne (Варшава,
Пожалуй, только этих мнений известных учёных (один из которых сыграл значительную роль в расчётах термоядерной реакции) достаточно для доказательства того, что Банах смог занять ведущее место в истории развития чрезвычайно важного и нового раздела анализа и войти в ряд известных математиков, работавших в этом направлении.
От себя лично, как свидетеля работы Банаха, я позволю добавить, что ясность мышления Банаха Казимеж Бартель однажды назвал «даже неприятной...». Он никогда не рассчитывал на счастливый случай, на то, что в данную минуту вдруг исполнятся его ожидания, и охотно говорил, что «надежда мать глупцов». Это пренебрежение оптимизмом он применял не только в математике, но также и в политических пророчествах. Он был схож с Гильбертом в том, что набрасывался на задачу напрямую отбрасывая все окольные пути и концентрируя усилия на центральном направлении, ведущем прямо к цели. Банах верил, что логический анализ проблемы должен напоминать шахматный анализ трудной позиции и приводить к точному доказательству или к опровержению утверждения.
Значение Банаха не ограничивается тем, чего он сам добился в теории линейных операций, в списке его 58 публикаций можно найти как работы, написанные совместно с другими математиками, так и его собственные работы, относящиеся к другим областям. 323 К обеим этим категориям принадлежит работа о разбиении множеств на смежные части, написанная совместно с Тарским (Fund. Math., 1924, 6,
1 | |
∫ | f (t) dt = 1, |
0 |
но такую, что
1 | |
∫ | f 2(t) dt = ∞, |
0 |
обозначает через
1 | |
∫ | f (t)φn(t) dt = cn. |
0 |
Если мы теперь определим последовательность
1 | |
∫ | f (t)ψn(t) dt = 0 |
0 |
для всех n. Ортонормируя последовательность
∞ | |
∫ | L(η) dη, |
∞ |
где L(η) означает число пересечений кривой
Не буду больше говорить о многочисленных и важных позициях списка работ создателя львовской школы и основателя журнала Studia Mathematica, сыгравшего немалую роль в развитии этой школы и в истории теории линейных операторов, а предпочту вернуться к личности Банаха и его непосредственному влиянию на окружение. Банах стал профессором в 1927 году, но ни до этого, ни после он не был профессором в академическом смысле этого слова. Он великолепно читал лекции, никогда не углубляясь в детали и не загромождал таблицы сложными и многочисленными обозначениями. Он не заботился о безупречности словесной формы, ему чужд был всякий гуманитарный глянец, и в течение всей жизни он сохранил некоторые черты краковского хулигана в способе существования и в речи. Письменное изложение мысли доставляло ему большие трудности. Свои рукописи он писал на больших страницах, вырванных из тетради; когда надо было изменить часть текста, он вырезал ненужные места и подклеивал части чистой странички (на которых писал новые версии), поэтому без помощи друзей и помощников первые работы Банаха никогда не дошли бы до типографии. Писем он почти совсем не писал и не отвечал на запросы в письменном виде. Он не увлекался логическими исследованиями, хотя отлично понимал их. Его не привлекали также практические применения математики, 325 хотя, несомненно, он мог бы ими заняться, если бы захотел ведь спустя год после получения степени доктора он читал лекции по механике в политехническом институте. Он говорил, что математика отличается специфической красотой, и её никогда не удастся свести к жёсткому дедуктивному методу, потому что рано или поздно она прорывает каждую формальную границу и создаёт новые принципы. Определяющей для него была ценность математических теорий, но не утилитарная, а самобытная. Его заграничные конкуренты по теории линейных операторов трактовали пространство слишком обобщённо, вследствие чего получали только банальные результаты, либо слишком много основывали на этих пространствах, сводя сферу их применения к немногочисленным и искусственным примерам гений Банаха проявился в нахождении золотой середины. Это умение проникать в суть вопроса характеризует Банаха как прирождённого математика.
Банах умел работать всегда и везде. Он не привык к удобствам и не требовал комфорта, поэтому ему вполне хватало профессорского жалованья. Но пристрастие к посещениям кафе и полное отсутствие обывательской бережливости и планомерности в повседневных делах загнали его сперва в долги, а в конце концов в очень трудное положение. Желая из него выбраться, он занялся написанием учебников. Так появилось «Rachunek różniczkowy i całkovy» (Дифференциальное и интегральное исчисление) в двух томах, из которых первый был выпущен издательством Оссолиньских (1929, 294 с.), а второй издательством Książnica-Atlas (1930, 248 с.). Этот учебник написан сжато и понятно, и он пользовался и сегодня ещё пользуется популярностью среди студентов первых лет обучения в высших учебных заведениях. Больше всего времени и сил отняло у Банаха написание учебников арифметики, алгебры и геометрии для средних школ, которые он писал сам или в соавторстве с Серпиньским и Стожеком. Его учебники ни в коем случае не были копированием существующих школьных книг, так как Банах (благодаря своему опыту репетитора) полностью отдавал себе отчёт в том, что каждое определение, каждый вывод и каждая задача чрезвычайно важны для автора школьного учебника, который беспокоится о дидактической ценности. 326 По моему мнению Банаху не хватало только одного из множества талантов, необходимых авторам школьных учебников: пространственного воображения. Продуктом опыта, приобретённого во время многократных лекционных курсов по механике в политехническом институте, стала «Mechanika w zakresie szkól akademickich» (Механика в объёме академических учебных заведений) (Monografie Matematyczne 8, 9). Этот двухтомный курс, изданный впервые в 1938 году, был переиздан в 1947 году, а несколько лет назад вышел его перевод на английский язык.
Чтобы оценить значение Банаха для науки в целом, а для польской науки в первую очередь, необходимо перечислить имена его учеников. Мы здесь видим нескольких из них. Мазур и Орлич являются непосредственными учениками Банаха: они представляют сегодня в Польше теорию операторов, их имена на обложке Studia Mathematica свидетельствуют о прямом продолжении банаховой научной программы, которая нашла явное выражение в этом издании. Станислав Улам, который обязан Куратовскому занятиями математикой, после получения степени доктора также вошёл в орбиту Банаха. Банах, Мазур и Улам
На более позднюю деятельность Банаха свою мрачную тень бросила Вторая мировая война. В
Банах прежде всего был математиком. Его мало интересовали политические вопросы, хотя он имел проницательный взгляд на любую актуальную ситуацию, в которой ему приходилось находиться. Природа не производила на него никакого впечатления, а искусство, литература, театр были для него второстепенными развлечениями и выпадали ему очень редко, во время кратких перерывов в работе зато он ценил сплочённый рюмкой коллектив 328 друзей. Концентрация всей его умственной энергии в одном направлении не знала никаких преград. Он не обольщался надеждой и прекрасно знал, что среди людей есть всего лишь небольшой процент тех, кто способен понять математику. Однажды он сказал мне: «Знаешь, друг, что я тебе скажу? Гуманитарные науки в средней школе важнее математики математика это острый инструмент, он не для детей...».
Было бы ошибкой представлять Банаха мечтателем, неряхой, апостолом или аскетом. Это был реалист, который даже физически не напоминал кандидатов в святые или хотя бы в святоши. Не знаю, существует ли сейчас, но наверняка ещё 25 лет назад существовал идеал польского учёного, созданный не столько по наблюдениям настоящих учёных, сколько исходя из духовных потребностей той эпохи, выразителем которой был Стефан Жеромский. Такой учёный должен был вдали от мирских утех работать для неясно определённого «общества», причём ему заранее прощалась даже безрезультатность этой работы, невзирая на то, что в других странах учёных оценивают не по степени их отречённости от жизни, а по их реальному вкладу в науку. Польская интеллигенция ещё между двумя войнами находилась под впечатлением этого мученического идеала, но Банах никогда ему не был подвластен. Он был здоровым и сильным, был реалистом вплоть до цинизма, а польской науке, особенно математике, сумел дать больше любого другого. Он лично больше всех остальных способствовал развенчанию ошибочного мнения, что в научной конкуренции недостаток гениальности (или, хотя бы, только недостаток таланта) можно заменить
Он дождался во Львове поражения немцев, но скончался вскоре после этого, 31 августа 1945 года. Его похоронили за счёт Украинской Республики. Его именем названа одна из вроцлавских улиц. Собрание его работ издано Польской Академией наук. 329
Самой главной заслугой Банаха является преодоление и разрушение до основания комплекса неполноценности поляков от ощущения своего низкого уровня в точных науках, маскирующегося возвышением посредственных личностей, Банах этому комплексу никогда не был подвержен он соединял в себе искру гениальности с